Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:54:43.314Z Has data issue: false hasContentIssue false

Self-consistent electrodynamics

Published online by Cambridge University Press:  24 October 2008

O. Buneman
Affiliation:
Peterhouse Cambridge

Abstract

The idea of direct action between streams is applied to a continuous charged fluid and combined with the new formulation of the electrodynamical laws of motion in terms of conservation of circulation. A simple and rigorous integrated formulation is thus obtained from the Maxwell-Lorentz differential equations, applicable to co-existing positive and negative fluids, as well as vacuum. Exact solutions are obtained, among them one which represents self-consistent, self-maintained flow in a hollow tubular region of infinite axial extent. It is hoped this tube might be bent into a torus and that an electron model will result from merely quantizing the one or two vortices around which this flow-pattern circulates.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bailey, V. A.Phys. Rev. 83 (1951), 439.CrossRefGoogle Scholar
(2)Bohm, D.Phys. Rev. 85 (1952), 166.CrossRefGoogle Scholar
(3)Buneman, O.Nature, Land., 165 (1950), 474.CrossRefGoogle Scholar
(4)Buneman, O.Proceedings of conference on dynamics of ionised media. (Not published. Available at University College, London, 1951.)Google Scholar
(5)Buneman, O.Proc. roy. Soc. A, 215 (1952), 346.Google Scholar
(6)Child, C. D.Phya. Rev. series I, 32 (1911), 492.Google Scholar
(7)Dirac, P. A. M.Proc. roy. Soc. A, 167 (1938), 148.Google Scholar
(8)Dirac, P. A. M.Proc. roy. Soc. A, 209 (1951), 291.Google Scholar
(9)Dirac, P. A. M.Proc. roy. Soc. A, 212 (1952), 330.Google Scholar
(10)Hartree, D. R.Proc. Camb. phil. Soc. 24 (1928), 111.CrossRefGoogle Scholar
(11)Hartree, D. R.Admiralty C.V.D. Report, Mag. 12 and 23 (1942).Google Scholar
(12)Jahnke, E. & Emde, F.Tables of Functions (New York, 1945).Google Scholar
(13)Kramers, H. A.Physica, 's Grav., 1 (1934), 825.CrossRefGoogle Scholar
(14)Langmuir, I.Phya. Rev. 2 (1913), 450.CrossRefGoogle Scholar
(15)Le Couteur, K. J.Nature, Land., 169 (1952), 146.CrossRefGoogle Scholar
(16)London, F.Superfluids (London, 1950).Google Scholar
(17)Macfarlane, G. G. and Hay, H. G.Proc. phys. Soc. London B, 63 (1950), 409.CrossRefGoogle Scholar
(18)Page, L. and Adams, N. I.Electrodynamics, chap. 9 (New York, 1940).Google Scholar
(19)Stratton, J. A.Electromagnetic Theory, 327 (New York, 1941).Google Scholar
(20)Thomas, L. H.Proc. Camb. phil. Soc. 23 (1926), 542.CrossRefGoogle Scholar
(21)Thomas, L. H.Nature, Lond., 117 (1926), 514.CrossRefGoogle Scholar
(22)Wheeler, J. A. and Feynman, R. P.Rev. mod. Phys. 17 (1945), 157.CrossRefGoogle Scholar