Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Korolko, Anna
and
Silva Leite, Fatima
2011.
Kinematics for rolling a Lorentzian sphere.
p.
6522.
Jurdjevic, Velimir
2011.
Optimal control on Lie groups and integrable Hamiltonian systems.
Regular and Chaotic Dynamics,
Vol. 16,
Issue. 5,
p.
514.
Grong, Erlend
2012.
Controllability of Rolling without Twisting or Slipping in Higher Dimensions.
SIAM Journal on Control and Optimization,
Vol. 50,
Issue. 4,
p.
2462.
Chitour, Yacine
and
Kokkonen, Petri
2012.
Rolling manifolds on space forms.
Annales de l'Institut Henri Poincaré C, Analyse non linéaire,
Vol. 29,
Issue. 6,
p.
927.
Crouch, Peter
and
Silva Leite, Fatima
2012.
Rolling motions of pseudo-orthogonal groups.
p.
7485.
de León, Manuel
2012.
A historical review on nonholomic mechanics.
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas,
Vol. 106,
Issue. 1,
p.
191.
Chitour, Yacine
Molina, Mauricio Godoy
and
Kokkonen, Petri
2014.
Geometric Control Theory and Sub-Riemannian Geometry.
Vol. 5,
Issue. ,
p.
103.
Biggs, R.
and
Remsing, C. C.
2014.
Cost-Extended Control Systems on Lie Groups.
Mediterranean Journal of Mathematics,
Vol. 11,
Issue. 1,
p.
193.
Godoy Molina, Mauricio
and
Grong, Erlend
2014.
Geometric conditions for the existence of a rolling without twisting or slipping.
Communications on Pure & Applied Analysis,
Vol. 13,
Issue. 1,
p.
435.
Marques, André
and
Leite, Fátima Silva
2015.
CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control.
Vol. 321,
Issue. ,
p.
3.
Leite, F. Silva
and
Louro, F.
2015.
Dynamics, Games and Science.
Vol. 1,
Issue. ,
p.
341.
Chitour, Y.
Godoy Molina, M.
and
Kokkonen, P.
2015.
On the Controllability of the Rolling Problem onto the Hyperbolic $n$-space.
SIAM Journal on Control and Optimization,
Vol. 53,
Issue. 2,
p.
948.
Chitour, Yacine
Godoy Molina, Mauricio
and
Kokkonen, Petri
2015.
Symmetries of the rolling model.
Mathematische Zeitschrift,
Vol. 281,
Issue. 3-4,
p.
783.
Grong, Erlend
2016.
Submersions, Hamiltonian Systems, and Optimal Solutions to the Rolling Manifolds Problem.
SIAM Journal on Control and Optimization,
Vol. 54,
Issue. 2,
p.
536.
Biggs, Rory
and
Remsing, Claudiu C.
2017.
Lie Groups, Differential Equations, and Geometry.
p.
127.
Krakowski, Krzysztof A.
and
Matematyczno-Przyrodniczy, Wydzial
2018.
Controllability of Rolling Symmetric Spaces.
p.
7.
Jovanović, Božidar
2018.
Rolling balls over spheres in $ \newcommand{\m}{\mathfrak m} {\mathbb{R}^n}$.
Nonlinearity,
Vol. 31,
Issue. 9,
p.
4006.
Krakowski, Krzysztof A.
Machado, Luís
and
Leite, Fátima Silva
2021.
A unifying approach for rolling symmetric spaces.
Journal of Geometric Mechanics,
Vol. 13,
Issue. 1,
p.
145.
Jurdjevic, Verlimir
2021.
CONTROLO 2020.
Vol. 695,
Issue. ,
p.
136.
Náprstek, Jiří
and
Fischer, Cyril
2021.
Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system.
Nonlinear Dynamics,
Vol. 106,
Issue. 3,
p.
1591.