No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
We prove a remarkable formula of Ramanujan for the logarithmic derivative of the gamma function, which converges more rapidly than classical expansions, and which is stated without proof in the notebooks [5]. The formula has a number of very interesting consequences which we derive, including an elegant hyperbolic summation, Ramanujan's formula for the Riemann zeta function evaluated at the odd positive integers, and new formulae for Euler's constant γ.