Published online by Cambridge University Press: 24 October 2008
The idea of gauge-invariance in general relativity was first introduced by Weyl(1) who proposed that the field equations of gravitation should be invariant, not only under the general group of coordinate transformations, but also under the gauge-transformation
where is the symmetric metric tensor, is the symmetric affine connexion and λ(x8) is an arbitrary scalar function of the coordinates. In this way it was possible to introduce into the theory a four-vector Ak which in consequence of (1·1) transformed as
such that the six-vector remained an invariant quantity under the gauge-transformation. It was Weyl's hope that by widening the invariance properties gauge-transformation. It was Weyl's hope that by widening the invariance properties of general relativity in this way the vector Ak and its associated six-vector Fik could be interpreted as representing the electromagnetic field. However, no obvious or unique way of doing this was found. More recently (see Stephenson (2,3) and Higgs (4)) gaugeinvariant variational principles formed from Lagrangians quadratic in the Riemann—Christoffel curvature tensor and its contractions have been discussed by performing the variations with respect to the symetric and symetric independently (following the palatini method).