Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T13:32:24.705Z Has data issue: false hasContentIssue false

Properties of isolated singularities of some functions taking values in real Clifford algebras

Published online by Cambridge University Press:  24 October 2008

John Ryan
Affiliation:
Department of Mathematics, University of York, Heslington, York Y01 5DD

Extract

The study of solutions to special examples of elliptic differential equations, using Clifford algebras, has been developed by a number of authors [4–12, 14–16, 18, 19, 21–30, 32]. This study has also been applied [3, 13, 17, 28] within a number of areas of theoretical physics, including Yang–Mills field theory, and the Kähler equation. Most of the function theories associated to the solutions of these elliptic differential equations, referred to as generalized Cauchy–Riemann equations [21,32], generalize in a natural manner many aspects of classical one-variable complex analysis [1]. For instance, each of these function theories contain analogues of the Cauchy theorem, Cauchy integral formula and Laurent expansion theorem. However, no information has yet been obtained on the local topological behaviour of a general solution to any of these equations.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ahlfors, L. V.. Complex Analysis, 2nd ed. (McGraw-Hill, 1966).Google Scholar
[2]Atiyah, M. F., Rott, R. and Shapiro, A.. Clifford modules. Topology 3 (1965), 338.Google Scholar
[3]Benn, I. M. and Tucker, R. W.. Fermions without spinors. Communications in Mathematical Physics (in the Press).Google Scholar
[4]Brackx, F. F.. On (k)-monogenic functions of a quaternion variable. In Function Theoretic Methods in Differential Equations, Research Notes in Mathematics Series (Pitman, 1976), pp. 2244.Google Scholar
[5]Delanghe, R.. On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185 (1970), 91111.CrossRefGoogle Scholar
[6]Delanghe, R.. On the singularities of functions with values in a Clifford algebra. Math. Ann. 196 (1972), 293319.CrossRefGoogle Scholar
[7]Delanghe, R. and Brackx, F. F.. Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. 37 (1978), 545576.Google Scholar
[8]Delanghe, R., Brackx, F. F. and Sommen, F.. Clifford Analysis. Research Notes in Mathematics Series, no. 76 (Pitman, 1982).Google Scholar
[9]Fueter, R.. Über die analytische Darstellung der regulären Funktionen einer Quatemionenvariablen. Comment. Math. Helv. 8 (1935), 371378.CrossRefGoogle Scholar
[10]Fueter, R.. Die Singularitäten der eindeutigen regulären Funktionen einer Quatemionenvariablen: I. Comment. Math. Helv. 9 (1936), 320334.Google Scholar
[11]Fueter, R.. Functions of a Hypercomplex Variable, Lecture notes written and supplemented by E. Bareiss. (University of Zurich, 1948).Google Scholar
[12]Goldschmidt, B.. Regularity properties of generalized analytic vectors in ℝn. Math. Nachr. 103 (1981), 245254.CrossRefGoogle Scholar
[13]Gürsey, F. and Tze, T. C.. Complex and quanternionic analyticity in chiral and gauge theories: I. Ann. Physics 128 (1980), 29130.Google Scholar
[14]Habetha, K.. Eine Bemerkung zur Funktionentheorie in Algebren. In Function Theoretic Methods for Partial Differential Equations, Proceedings, Lecture Notes in Math. vol. 561 (Springer-Verlag, 1976), 502509.CrossRefGoogle Scholar
[15]Hestenes, D.. Multivector functions. J. Math. Anal. Appl. 24 (1968), 467473.Google Scholar
[16]Iftimie, V.. Functions hypercomplexes. Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.) 9, 57 (1965), 279332.Google Scholar
[17]Imaeda, K.. A new formulation of electromagnetism. Nuovo Cimento 326 (1976), 138162.Google Scholar
[18]Lounesto, P.. Spinor valued regular functions in hypercomplex analysis. Doctoral Thesis, Helsinki, Finland, 1979.Google Scholar
[19]McCarthy, P. J.. Ultrageneralized complex analysis. Lett. Math. Phys. 4 (1980), 509514.CrossRefGoogle Scholar
[20]Porteous, I.. Topological Geometry (Van Nostrand Company, 1969).Google Scholar
[21]Ryan, J.. Complexified Clifford analysis. Complex variables. Theory and Application 1 (1982), 119149.CrossRefGoogle Scholar
[22]Ryan, J.. Clifford analysis with generalized elliptic and quasielliptic functions. Applicable Anal. 13 (1982), 151171.CrossRefGoogle Scholar
[23]Ryan, J.. Singularities and Laurent expansions in complex Clifford analysis. Applicable Anal, (in the Press).Google Scholar
[24]Ryan, J.. Topics in hypercomplex analysis. Doctoral Thesis, University of York, Britain, 1982.Google Scholar
[25]Ryan, J.. Cauchy Kowalewski extension theorems and representations of analytic functions acting over special classes of real n-dimensional subspaces of Cn+1. 11th Winter School on Abstract Analysis, Czechoslovakia, 1983.Google Scholar
[26]Sommen, F.. Some connections between complex analysis and Clifford analysis, in complex variables. Theory and Application 1 (1982), 97118.Google Scholar
[27]Sommen, F.. Spherical monogenic functions and analytic functionals on the unit sphere. Tokyo J. Math. 4, (1981), 427456.CrossRefGoogle Scholar
[28]Soucek, V.. Complex-quaternionic analysis applied to spin ½ massless fields. Complex Variables. Theory and Application (in the Press).Google Scholar
[29]Sprossig, W.. Losungsdarstellungen einer Klasse spezieller Operatorgleichungen. Math. Nachr. 90 (1979), 135147.Google Scholar
[30]Sudbery, A.. Quaternionic analysis. Math. Proc. Cambridge Philoa. Soc. 86, (1979), 199225.CrossRefGoogle Scholar
[31]Vilenkin, N. J.. Special functions and the theory of group representations. Trans. Math. Monographs 22 (1968).Google Scholar
[32]Weiss, G. and Stein, E. M.. Generalizations of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90 (1968), 163196.Google Scholar