Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T01:11:27.559Z Has data issue: false hasContentIssue false

Principes locaux-globaux pour certaines fibrations en torseurs sous un tore

Published online by Cambridge University Press:  08 December 2014

ARNE SMEETS*
Affiliation:
Departement Wiskunde, KU Leuven, Leuven, Belgium, and Département de Mathématiques, Université Paris-Sud 11, Orsay, France. e-mail: [email protected]

Abstract

Let k be a number field and T a k-torus. Consider a family of torsors under T, i.e. a morphism f : X → ℙ1k from a projective, smooth k-variety X to ℙ1k, the generic fibre Xη → η of which is a smooth compactification of a principal homogeneous space under Tk η. We study the Brauer–Manin obstruction to the Hasse principle and to weak approximation for X, assuming Schinzel's hypothesis. We generalise Wei's recent results [21]. Our results are unconditional if k = Q and all non-split fibres of f are defined over Q. We also establish an unconditional analogue of our main result for zero-cycles of degree 1.

Résumé

Soit k un corps de nombres et soit T un k-tore. Considérons une fibration en torseurs sous T, c'est-à-dire un morphisme f : X → ℙ1k d'une k-variété projective et lisse X vers ℙ1k tel que sa fibre générique Xη → η soit une compactification lisse d'un espace principal homogène sous Tk η. On étudie dans ce texte l'obstruction de Brauer-Manin au principe de Hasse et à l'approximation faible pour X, sous l'hypothèse de Schinzel. On généralise les résultats récents de Wei [21]. Nos résultats sont inconditionnels si k = Q et les fibres non-scindées de f sont définies sur Q. On établit également un analogue inconditionnel de notre résultat principal pour les zéro-cycles de degré 1.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Browning, T. D., Heath–Brown, D. R.Quadratic polynomials represented by norm forms. Geom. Funct. Anal. 22 (2012), 11241190.Google Scholar
[2]Colliot–Thélène, J.-L.Groupe de Brauer non ramifié d'espaces homogènes de tores. J. Théor. Nombres Bordeaux. 26 (2014), 6983.Google Scholar
[3]Colliot–Thélène, J.-L.Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences. Paru dans Arithmetic Geometry (CIME 2007), (Springer LNM 2009) (2011), 144.Google Scholar
[4]Colliot–Thélène, J.-L., Harari, D. and Skorobogatov, A. N.Valeurs d'un polynôme à une variable représentées par une norme. Paru dans le volume Number theory and algebraic geometry. London Math. Soc. Lecture Note Ser. vol. 303 (Cambridge University Press, Cambridge, 2003), 6989.Google Scholar
[5]Colliot–Thélène, J.-L. and Sansuc, J.-J.La descente sur les variétés rationnelles. II. Duke Math. J. 54 (2) (1987), 375492.Google Scholar
[6]Colliot–Thélène, J.-L. and Sansuc, J.-J.Principal homogeneous spaces under flasque tori: applications. J. Algebra 106 (1) (1987), 148205.Google Scholar
[7]Colliot–Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, P.Intersections of two quadrics and Châtelet surfaces. I. J. Reine Angew. Math. 373 (1987), 37107.Google Scholar
[8]Colliot–Thélène, J.-L., Skorobogatov, A. N. and Swinnerton-Dyer, P.Rational points and zero-cycles on fibred varieties: Schinzel's hypothesis and Salberger's device. J. Reine Angew. Math. 495 (1998), 128.Google Scholar
[9]Colliot–Thélène, J.-L. and Swinnerton–Dyer, P.Hasse principle and weak ap-proximation for pencils of Severi-Brauer and similar varieties. J. Reine Angew. Math. 453 (1994), 49112.Google Scholar
[10]Derenthal, U., Smeets, A. and Wei, D. Universal torsors and values of quadratic polynomials represented by norms. Math. Ann. published online (2014).Google Scholar
[11]Ekedahl, T.An effective version of Hilbert's irreducibility theorem. Séminaire de théorie des nombres de Paris 1988–1989, éd. Goldstein, C.Progr. Math. 91 (Birkhäuser, Boston, 1990), 241248.Google Scholar
[12]Harari, D.Méthode des fibrations et obstructions de Manin. Duke Math. J. 75 (1994), 221260.Google Scholar
[13]Heath-Brown, D. R. and Skorobogatov, A.Rational solutions of certain equations involving norms. Acta Math. 189 (2) (2002), 161177.CrossRefGoogle Scholar
[14]Harpaz, Y., Skorobogatov, A. and Wittenberg, O.The Hardy–Littlewood conjecture and rational points. Compositio Math. published online (2014).Google Scholar
[15]Liang, Y.Towards the Brauer–Manin obstruction on varieties fibred over the projective line. J. Algebra 413 (2014), 5071.CrossRefGoogle Scholar
[16]Sansuc, J.-J.Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math. 327 (1981), 1280.Google Scholar
[17]Schindler, D. and Skorobogatov, A. N.Norms as products of linear polynomials. J. London Math. Soc. 89 (2014), 559580.Google Scholar
[18]Skorobogatov, A.Descent on fibrations over the projective line. Amer. J. Math. 118 (1996), 905923.CrossRefGoogle Scholar
[19]Swinnerton-Dyer, P. Lettre à O. Wittenberg du 10 Janvier 2005.Google Scholar
[20]Várilly-Alvarado, A. and Viray, B.Higher dimensional analogues of Châtelet surfaces. Bull. London Math. Soc. 44 (2012), 125135.Google Scholar
[21]Wei, D.On the equation NK/k(Ξ) = P(t). Proc. London Math. Soc. published online (2014).Google Scholar