Published online by Cambridge University Press: 24 October 2008
Fall, Arveson and Muhly(4) characterized the compact perturbation of nest algebras. In fact they proved that the compact perturbation of a nest algebra corresponding to a nest of projections is the algebra of operators which are quasitriangular relative to this nest. Erdos and Power(3) investigated weakly closed ideals and modules of nest algebras and these exhibit properties that are very close to the properties of the nest algebras themselves. They also showed that in certain cases, as in the case when the homomorphism which determines the nest algebra module is continuous, the results of Fall, Arveson and Muhly carry over to the more general situation. In this paper we provide a characterization of the compact perturbation of any nest algebra module.