Published online by Cambridge University Press: 01 March 1999
The problem of constructing non-diagonal solutions to systems of symmetric diagonal equations has attracted intense investigation for centuries (see [5, 6] for a history of such problems) and remains a topic of current interest (see, for example, [2–4]). In contrast, the problem of bounding the number of such non-diagonal solutions has commanded attention only comparatively recently, the first non-trivial estimates having been obtained around thirty years ago through the sieve methods applied by Hooley [10, 11] and Greaves [7] in their investigations concerning sums of two kth powers. As a further contribution to the problem of establishing the paucity of non-diagonal solutions in certain systems of diagonal diophantine equations, in this paper we bound the number of non-diagonal solutions of a system of simultaneous quadratic and biquadratic equations. Let S(P) denote the number of solutions of the simultaneous diophantine equations
formula here
with 0[les ]xi, yi[les ]P(1[les ]i[les ]3), and let T(P) denote the corresponding number of solutions with (x1, x2, x3) a permutation of (y1, y2, y3). In Section 4 below we establish the upper and lower bounds for S(P)−T(P) contained in the following theorem.