Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Runde, Volker
2004.
Applications of operator spaces to abstract harmonic analysis.
Expositiones Mathematicae,
Vol. 22,
Issue. 4,
p.
317.
Forrest, Brian E.
and
Runde, Volker
2005.
Amenability and weak amenability of the Fourier algebra.
Mathematische Zeitschrift,
Vol. 250,
Issue. 4,
p.
731.
Runde, Volker
and
Spronk, Nico
2007.
Operator amenability of Fourier-Stieltjes algebras, II.
Bulletin of the London Mathematical Society,
Vol. 39,
Issue. 2,
p.
194.
Forrest, Brian E.
Runde, Volker
and
Spronk, Nico
2007.
Operator Amenability of the Fourier Algebra in the cb-Multiplier Norm.
Canadian Journal of Mathematics,
Vol. 59,
Issue. 5,
p.
966.
Neufang, Matthias
and
Runde, Volker
2009.
Column and row operator spaces over QSLp-spaces and their use in abstract harmonic analysis.
Journal of Mathematical Analysis and Applications,
Vol. 349,
Issue. 1,
p.
21.
Ghandehari, Mahya
Hatami, Hamed
and
Spronk, Nico
2009.
Amenability constants for semilattice algebras.
Semigroup Forum,
Vol. 79,
Issue. 2,
p.
279.
Wiersma, Matthew
2015.
Lp-Fourier and Fourier–Stieltjes algebras for locally compact groups.
Journal of Functional Analysis,
Vol. 269,
Issue. 12,
p.
3928.
Runde, Volker
and
Uygul, Faruk
2015.
Connes-amenability of Fourier–Stieltjes algebras.
Bulletin of the London Mathematical Society,
Vol. 47,
Issue. 4,
p.
555.
Hayati, Bahman
Bodaghi, Abasalt
and
Amini, Massoud
2019.
Operator Connes-amenability of completely bounded multiplier Banach algebras.
Archivum Mathematicum,
p.
31.
Alaghmandan, Mahmood
Crann, Jason
and
Neufang, Matthias
2020.
Mapping ideals of quantum group multipliers.
Advances in Mathematics,
Vol. 374,
Issue. ,
p.
107353.
Spronk, Nico
2020.
On operator amenability of Fourier-Stieltjes algebras.
Bulletin des Sciences Mathématiques,
Vol. 158,
Issue. ,
p.
102823.
DeGaetani, Joseph
and
Ghandehari, Mahya
2025.
On the Restriction Maps of the Fourier and Fourier–Stieltjes Algebras Over Locally Compact Groupoids.
International Mathematics Research Notices,
Vol. 2025,
Issue. 6,