Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T02:13:39.130Z Has data issue: false hasContentIssue false

On topological sequence spaces

Published online by Cambridge University Press:  24 October 2008

D. J. H. Garling
Affiliation:
St John's College, Cambridge

Extract

We denote by ω the linear space of all sequences of real or complex numbers. A linear subspace of ω is called a sequence space. A subset A of ω is solid if whenever xA and |yi| ≤ |xi| for each i, then yA. The theory of solid sequence spaces, topologized in a variety of ways, has been developed in considerable detail, in particular by Köthe and Toeplitz (13) and subsequently by Köthe (see, for example (12)). These results have been generalized to function spaces by Dieudonné(6), to vector-valued sequence spaces by Pietsch (18), to vector spaces with a Boolean algebra of projections by Cooper ((4), (5)), and in the real case, to partially-ordered spaces by Luxemburg and Zaanen (see, for example (14)) and Fremlin (8). This last generalization shows that many of the properties of solid sequence spaces depend upon their order structure, rather than upon their structure as sequence spaces.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Allen, H. S.Projective convergence and limit in sequence spaces. Proc. London Math. Soc. Series 2, 48 (19431945), 310338.Google Scholar
(2)Bourbaki, N.Espaces vectoriels topologiques (Paris, 1953, 1955).Google Scholar
(3)Chillingworth, H. R.Generalised ‘dual’ sequence spaces. Nederl. Akad. Wetensch. Indag. Math. 20 (1958), 307315.CrossRefGoogle Scholar
(4)Cooper, J. L. B.Coordinated linear spaces. Proc. London Math. Soc. Series 3, 3 (1953), 305327.CrossRefGoogle Scholar
(5)Cooper, J. L. B.On a generalisation of the Köthe coordinated spaces. Math. Ann. 162 (1966), 351363.CrossRefGoogle Scholar
(6)Dieudonné, J.Sur les espaces de Köthe. J. Analyse Math. 1 (1951), 81115.CrossRefGoogle Scholar
(7)Dunford, N. and Schwartz, J. T.Linear operators, Part I (New York, 1958).Google Scholar
(8)Fremlin, D. H.On Köthe spaces. Dissertation (Cambridge, 1966).Google Scholar
(9)Garling, D. J. H.On symmetric sequence spaces. Proc. London Math. Soc. Series 3, 16 (1966), 85106.CrossRefGoogle Scholar
(10)Garling, D. J. H.The β- and γ-duality of sequence spaces. Proc. Cambridge Philos. Soc. 63 (1967), 963981.CrossRefGoogle Scholar
(11)Köthe, G.Topologische Lineare Räume, I. (Berlin, 1960).CrossRefGoogle Scholar
(12)Köthe, G.Neubegründung der Theorie der vollkommenen Räume. Math. Nachr. 4 (1951), 7080.CrossRefGoogle Scholar
(13)Köthe, G. and Toeplitz, O.Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen. J. reine angew. Math. 171 (1934), 193226.CrossRefGoogle Scholar
(14)Luxemburg, W. A. J. and Zaanen, A. C.Notes on Banach function spaces, VIII-XIII. Nederl. Akad. Wetensch. Indag. Math. 26 (1964), 104119, 360–376, 493–543.CrossRefGoogle Scholar
(15)Matthews, G.Generalised rings of infinite matrices. Nederl. Akad. Wetensch. Indag. Math. 20 (1958), 298306.CrossRefGoogle Scholar
(16)Mazur, S. and Orlicz, W.On linear methods of summability. Studia Math. 14 (1955), 129160.CrossRefGoogle Scholar
(17)Persson, A.On a class of conditional Köthe function spaces. Math. Ann. 160 (1965), 131145.CrossRefGoogle Scholar
(18)Pietsch, A.Verallgemeinerte vollkommene Folgenräume (Berlin, 1962).Google Scholar
(19)Sargent, W. L. C.Some sequence spaces related to the lp spaces. J. London Math. Soc. 35 (1960), 161171.CrossRefGoogle Scholar
(20)Sargent, W. L. C.On sectionally bounded BK-spaces. Math. Z. 83 (1964), 5766.CrossRefGoogle Scholar
(21)Webb, J. H. Sequential convergence in locally convex spaces (to appear).Google Scholar
(22)Zeller, K.Abschnittskonvergenz in FK-Räumen. Math. Z. 55 (1951), 5570.CrossRefGoogle Scholar
(23)Zeller, K.FK-Räume in der Funktionentheorie, I. Math. Z. 58 (1953), 288305.CrossRefGoogle Scholar
(24)Zeller, K.Theorie der Limitierungsverfahren (Berlin, 1958).CrossRefGoogle Scholar