Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T15:26:03.605Z Has data issue: false hasContentIssue false

On the uniqueness of cellular injectives

Published online by Cambridge University Press:  18 June 2018

J. ROSICKÝ*
Affiliation:
Department of Mathematics and Statistics, Masaryk University, Faculty of Sciences, Kotlářská 2, 611 37 Brno, Czech Republic. e-mail: [email protected]

Abstract

A. Avilés and C. Brech proved an intriguing result about the existence and uniqueness of certain injective Boolean algebras or Banach spaces. Their result refines the standard existence and uniqueness of saturated models. They express a wish to obtain a unified approach in the context of category theory. We provide this in the framework of weak factorisation systems. Our basic tool is the fat small object argument.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Adámek, J., Herrlich, H., Rosický, J. and Tholen, W. Weak factorisation systems and topological functors. Appl. Categ. Str. 10 (2002), 237249.Google Scholar
[2] Adámek, J. and Rosický, J. Locally Presentable and Accessible Categories (Cambridge University Press 1994).Google Scholar
[3] Adámek, J. and Rosický, J. What are locally generated categories? Proc. Categ. Conf. (Como 1990), Lecture Notes in Math. 1488 (1991), 1419.Google Scholar
[4] Avilés, A. and Brech, C. A Boolean algebra and a Banach space obtained by push-out iteration. Top. Appl. 158 (2011), 15341550.Google Scholar
[5] Avilés, A., Sánchez, F. C., Castillo, J. M. F., Gonzáles, M. and Moreno, Y. Banach spaces of universal disposition. J. Funct. Anal. 261 (2011), 23472361.Google Scholar
[6] Avilés, A., Sánchez, F. C., Castillo, J. M. F., Gonzáles, M. and Moreno, Y. ℵ-injective Banach spaces and ℵ-projective compacta. ArXiv:1406.6733.Google Scholar
[7] Balbes, R. and Horn, A. Injective and projective Heyting algebras. Trans. Amer. Math. Soc. 48 (1970), 549559.Google Scholar
[8] Beke, T. Sheafifiable homotopy model categories. Math. Proc. Camb. Phil. Soc. 129 (2000), 447475.Google Scholar
[9] Beke, T. and Rosický, J. Abstract elementary classes and accessible categories. Annals Pure Appl. Logic 163 (2012), 20082017.Google Scholar
[10] Boney, W., Grossberg, R., Lieberman, M., Rosický, J. and Vasey, S. μ-abstract elementary classes and other generalisations. J. Pure Appl. Algebra 220 (2016), 30483066.Google Scholar
[11] Chou, C.-Y. Notes on the separability of C*-algebras. Taiwanese J. Math. 16 (2012), 555559.Google Scholar
[12] Cohen, H. B. Injective envelopes of Banach spaces. Bull. Amer. Math. Soc. 70 (1964), 723726.Google Scholar
[13] Freyd, P. J. and Kelly, G. M. Categories of continuous functors, I. J. Pure Appl. Algebra 2 (1972), 169191.Google Scholar
[14] Geschke, S. On tightly κ-filtered Boolean algebras. Algebra Universalis 47 (2002), 6993.Google Scholar
[15] Gleason, A. M. Projective topological spaces. Illinois J. Math. 2 (1958), 482489.Google Scholar
[16] Halmos, P. R. Lectures in Boolean Algebras (Van Nostrand, 1963).Google Scholar
[17] Isbell, J. R. Generating the algebraic theory of C(X). Algebra Universalis 15 (1982), 153155.Google Scholar
[18] Kiss, E. W., Márki, L., Pröhle, P. and Tholen, W. Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness and injectivity. Studia Sci. Math. Hungar. (1983).Google Scholar
[19] Kubiś, W. Fraíssé sequences - a category-theoretic approach to universal homogeneous structures. Annals of Pure Appl. Logic 165 (2014), 17551811.Google Scholar
[20] Makkai, M. and Paré, R. Accessible Categories: the Foundations of Categorical Model Theory (AMS 1989).Google Scholar
[21] Makkai, M., Rosický, J. and Vokřínek, L. On a fat small object argument. Adv. Math. 254 (2014), 4968.Google Scholar
[22] Parovičenko, I. I. A universal bicompact of weight ℵ. Soviet Math. Dokl. 4 (1963) 592-595.Google Scholar
[23] Pitts, A. M. Amalgamation and interpolation in the category of Heyting algebras. J. Pure Appl. Algebra 29 (1983) 155165.Google Scholar
[24] Rosický, J. Accessible categories, saturation and categoricity. J. Symbolic Logic 62 (1997), 891901.Google Scholar
[25] Rosický, J. and Tholen, W. Factorisations, fibrations and torsion. J. Hom. Rel. Str. 2 (2007), 295314.Google Scholar