Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T17:18:20.125Z Has data issue: false hasContentIssue false

On the symmetries of spherical harmonics

Published online by Cambridge University Press:  24 October 2008

S. L. Altmann
Affiliation:
Mathematical InstituteOxford

Extract

It is often necessary to obtain expansions in spherical harmonics that belong to a given irreducible representation of a symmetry group. This is the case, for instance, when the cellular method is applied to investigate the band structure of a metal, where expansions are required that reproduce the symmetry of the group of the k vector (see Bouckaert, Smoluchowski and Wigner(4); von der Lage and Bethe (9)). Another instance where such expansions are necessary appears when hybrid orbitals are obtained for a central atom in a molecule of given symmetry (Kimball (8)). In this case lower order spherical harmonics are considered and tables for them up to l = 2 (functions s, p and d in real form) are given in the literature (cf. for example Eyring, Walter and Kimball (5)). However, interest has recently arisen in hybrids that include f functions (Shirmazan and Dyatkina (12)) and an extension of these tables appears to be desirable.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Altmann, S. L.Proc. Phys. Soc. Lond. A, 69 (1956), 184.CrossRefGoogle Scholar
(2)Bell, D. G.Rev. Mod. Phys. 26 (1954), 311.CrossRefGoogle Scholar
(3)Bethe, H.Ann. Phys., Lpz., 3 (1929), 133.CrossRefGoogle Scholar
(4)Bouckaert, L. P., Smoluchowski, R. and Wigner, E.Phys. Rev. 50 (1936), 58.CrossRefGoogle Scholar
(5)Eyring, H., Walter, J. and Kimball, G. E.Quantum chemistry (New York, 1944).Google Scholar
(6)Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B.Molecular theory of gases and liquids (New York, 1954).Google Scholar
(7)Howarth, D. J. and Jones, H.Proc. Phys. Soc. Lond. A, 65 (1952), 355.CrossRefGoogle Scholar
(8)Kimball, G. E.J. Chem. Phys. 8 (1940), 188.CrossRefGoogle Scholar
(9)von Der Lage, F. C. and Bethe, H. A.Phys. Rev. 71 (1947), 612.CrossRefGoogle Scholar
(10)Margenau, H. & Murphy, G. M.The mathematics of physics and chemistry (New York, 1943).Google Scholar
(11)Meyer, B.Canad. J. Math. 6 (1954), 135.CrossRefGoogle Scholar
(12)Shirmazan, M. G. and Dyatkina, M. E.J. Phys. Chem. (USSR) 27 (1953), 491.Google Scholar
(13)Wigner, E.Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Braunschweig, 1931).CrossRefGoogle Scholar