Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T02:03:47.047Z Has data issue: false hasContentIssue false

On the simple object associated to a diagram in a closed model category

Published online by Cambridge University Press:  24 October 2008

Pere Pascual-Gainza
Affiliation:
Departament de Matematiques, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain

Extract

In this paper we develop a descent technique for generalized (co)-homology theories defined in the category of algebraic varieties. By such a theory we mean a functor Sch→C, where C is a closed model category in the sense of Quillen satisfying certain axioms (cf. §4). We have chosen to work in such a general context so as to include two situations for which the results of SGA 4 of Deligne and Saint-Donat are not applicable: descent of multiplicative structures (i.e. of differential graded algebras) and descent for generalized sheaf cohomology (such as the algebraic K-theory of coherent sheaves over a noetherian scheme).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adams, J. F.. Stable Homotopy and Generalized Homology (Chicago University Press, 1974).Google Scholar
[2]Bousfield, A. and Friedlander, E.. Homotopy theory of Γ-spaces, spectra and bi-simplicial sets. In Geometric Applications of Homotopy Theory, Lecture Notes in Math. vol. 658 (Springer-Verlag, 1978), 80131.CrossRefGoogle Scholar
[3]Bousfield, A. and Gugenheim, V.. On PL de Rham homotopy theory. Mem. Amer. Math. Soc. 179 (1976).Google Scholar
[4]Bousfield, A. and Kan, D.. Homotopy Limits, Completions and Localizations. Lecture Notes in Math. vol. 304 (Springer-Verlag, 1972).CrossRefGoogle Scholar
[5]Brown, K. and Gersten, S. M.. Algebraic k-theory as generalised sheaf cohomology. In Algebraic k-theory. Lecture Notes in Math. vol. 341 (Springer-Verlag, 1973), 266292.Google Scholar
[6]Edwards, D. and Hastings, H.. Čech and Steenrod homotopy theories with applications to geometric topology. Lecture Notes in Math. vol. 542 (Springer-Verlag, 1976).CrossRefGoogle Scholar
[7]Fulton, W. and Gillet, H.. Riemann-Roch for general algebraic varieties. Bull. Soc. Math. France 111 (1983), 287300.Google Scholar
[8]Gillet, H.. Comparison of k-theory spectral sequences. In Algebraic k-theory, Evanston, Lecture Notes in Math. vol. 854 (Springer-Verlag, 1981), 141167.Google Scholar
[9]Gillet, H.. Riemann-Roch theorems for higher algebraic k-theory. Adv. in Math. 40 (1981), 203289.CrossRefGoogle Scholar
[10]Grothendieck, A.. Sur quelques points d'algèbre homologique. Tohôku Math. J. 9 (1957), 119221.Google Scholar
[11]Guillén, F., Aznar, V. Navarro and Puerta, F.. Théorie de Hodge via schémas cubiques. Preprint 1982.Google Scholar
[12]Heine, R.. The De Rham theory of complex algebraic varieties. Preprint 1984. University of Utah.Google Scholar
[13]MacLane, S.. Categories for the working mathematician (Springer-Verlag, 1972).Google Scholar
[14]Aznar, V. Navarro. La théorie de Hodge-Deligne. Preprint 1985. Universitat Politècnica de Catalunya.Google Scholar
[15]Pascual-Gainza, P.. Contribucions a la teoria d'espais algebraics. Tesi, Universitat Autònoma de Barcelona 1983.Google Scholar
[16]Pascual-Gainza, P.. Descente cubique pour la k-théorie et l'homologie de Chow. Preprint 1985. Universitat Politècnica de Catalunya.Google Scholar
[17]Quillen, D.. Homotopical Algebra. Lecture Notes in Math. vol. 43 (Springer-Verlag, 1967).CrossRefGoogle Scholar
[18]Quillen, D.. Higher algebraic k-theory. In Algebraic k-theory, Lecture Notes in Math. vol. 341 (Springer-Verlag, 1973), 85147.Google Scholar
[19]Switzer, R.. Algebraic Topology (Springer-Verlag, 1975).Google Scholar
[20]Thomason, R.. Algebraic k-theory and etale cohomology. Preprint (second version) 1984. To appear in Ann. Ecole. Norm. Sup.Google Scholar
[21]Thomason, R.. Lefschetz-Riemann-Roch theorem. Preprint 1984.Google Scholar
[22]Verdier, J. L.. Catégories derivées, Etat 0. In SGA 4½, Lecture Notes in Math. vol. 569 (Springer-Verlag, 1977), 262312.Google Scholar
[23]Boardman, J.. Conditionally convergent spectral sequences. Preprint (1981).Google Scholar