Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T16:31:36.207Z Has data issue: false hasContentIssue false

On the order of magnitude of Ramanujan's arithmetical function τ(n)

Published online by Cambridge University Press:  24 October 2008

W. B. Pennington
Affiliation:
Harvard University

Extract

1. In his paper ‘On certain arithmetical functions' Ramanujan (23) considers the function τ(n) defined by the expansion

This function appears in the discussion of an asymptotic formula for the function

and also in Ramanujan's formula for the number of representations of an integer as the sum of 24 squares. It is also of interest as the coefficient in the expansion of g(z), which plays an important part in the theory of modular functions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Besicovitch, A. S.On the linear independence of fractional powers of integers. J. London Math. Soc. 15 (1940), 36.CrossRefGoogle Scholar
(2)Bohr, H. and Jessen, B.One more proof of Kronecker's theorem. J. London Math. Soc. 7 (1932), 274–5.CrossRefGoogle Scholar
(3)Davenport, H.On certain exponential sums. J. reine angew. Math. 169 (1932), 158–76.Google Scholar
(4)Goursat, E.A course in mathematical analysis, English ed. (Boston, 1904).Google Scholar
(5)Hardy, G. H.On the expression of a number as the sum of two squares. Quart. J. Math. 46 (1915), 263–83.Google Scholar
(6)Hardy, G. H.On Dirichlet's divisor problem. Proc. London Math. Soc. (2), 15 (1916), 125.Google Scholar
(7)Hardy, G. H.Note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Phil. Soc. 23 (1927), 675–80.CrossRefGoogle Scholar
(8)Hardy, G. H.A further note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Phil. Soc. 34 (1938), 309–15.CrossRefGoogle Scholar
(9)Hardy, G. H.Ramanujan (Cambridge, 1940).Google Scholar
(10)Hardy, G. H. and Landau, E.The lattice points of a circle. Proc. Roy. Soc. A, 105 (1924), 244–58.Google Scholar
(11)Hardy, G. H. and Littlewood, J. E.Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 41 (1918), 119–96.CrossRefGoogle Scholar
(12)Ingham, A. E.The distribution of prime numbers (Cambridge Math. Tracts, no. 30, 1932).Google Scholar
(13)Ingham, A. E.A note on the distribution of primes. Acta arithmet. 1 (1936), 201–11.CrossRefGoogle Scholar
(14)Ingham, A. E.On two classical lattice point problems. Proc. Cambridge Phil. Soc. 36 (1940), 131–8.CrossRefGoogle Scholar
(15)Ingham, A. E.On two conjectures in the theory of numbers. American J. Math. 64 (1942), 313–19.CrossRefGoogle Scholar
(16)Jordan, C.Cours d'analyse de l'école polytechnique (Paris, 19091915).Google Scholar
(17)Kloosterman, H. D.Asymptotische Formeln für die Fourierkoeffizienten ganzer Modul-formen. Abh. math. Sem. Hamburg. Univ. 5 (1927), 337–52.CrossRefGoogle Scholar
(18)Landau, E. Über die Gitterpunkte in einem Kreise. II. Nachr. Ges. Wiss. Göttingen, (1915), pp. 161–71.Google Scholar
(19)Landau, E. Über die Anzahl der Gitterpunkte in gewissen Bereichen. III. Nachr. Ges. Wiss. Göttingen (1917), pp. 96101.Google Scholar
(20)Landau, E.Vorlesungen über Zahlentheorie (Leipzig, 1927).Google Scholar
(21)Littlewood, J. E.Sur la distribution des nombres premiers. C.R. Acad. Sci., Paris, 158 (1914), 1869–72.Google Scholar
(22)Mordell, L. J.On Mr Ramanujan's empirical expansions of modular functions. Proc. Cambridge Phil. Soc. 19 (1920), 117–24.Google Scholar
(23)Ramanujan, S.On certain arithmetical functions. Trans. Cambridge Phil. Soc. 22 (1916), 159–84, or Collected papers (Cambridge, 1927), pp. 136–62.Google Scholar
(24)Rankin, R. A.Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. I. Proc. Cambridge Phil. Soc. 35 (1939), 351–6.CrossRefGoogle Scholar
(25)Rankin, R. A.Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II. Proc. Cambridge Phil. Soc. 35 (1939), 357–72.CrossRefGoogle Scholar
(26)Rankin, R. A.Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. III. Proc. Cambridge Phil. Soc. 36 (1940), 150–1.CrossRefGoogle Scholar
(27)Salié, H.Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen. Math. Z. 36 (1931), 263–78.CrossRefGoogle Scholar
(28)Tannery, J. and Molk, J.Éléments de la théorie des fonctions elliptiques (Paris, 18931902).Google Scholar
(29)Walfisz, A.Koeffizientensummen einiger Modulformen. Math. Ann. 108 (1933), 7590.CrossRefGoogle Scholar
(30)Watson, G. N.A treatise on the theory of Bessel functions, 2nd ed. (Cambridge, 1944).Google Scholar
(31)Weil, A.On some exponential sums. Proc. Nat. Acad. Sci., Washington 34 (1948), 204–6.CrossRefGoogle ScholarPubMed
(32)Wilton, J. R.A note on Ramanujan's arithmetical function τ(n). Proc. Cambridge Phil. Soc. 25 (1929), 121–9.CrossRefGoogle Scholar