Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T11:22:29.919Z Has data issue: false hasContentIssue false

On the irrationality measure of the Thue–Morse constant

Published online by Cambridge University Press:  27 March 2018

DZMITRY BADZIAHIN
Affiliation:
School of Mathematics and Statistics F07, Univerity of Sydney, NSW 2006, Australia email: [email protected]
EVGENIY ZORIN
Affiliation:
Department of Mathematics, University of York, Heslington, York, YO10 5DD, U.K. email: [email protected]

Abstract

We provide a non-trivial measure of irrationality for a class of Mahler numbers defined by infinite products. This class includes the Thue–Morse constant. Among other things, our results imply a generalisation to [12].

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamczewski, B. and Cassaigne, J.. Diophantine properties of real numbers generated by finite automata. Comp. Math. 142 (2006), 13511372.CrossRefGoogle Scholar
Adamczewski, B. and Rivoal, T.. Irrationality measures for some automatic real numbers. Math. Proc. Camb. Phil. Soc. 147 (2009), 659678.CrossRefGoogle Scholar
Allouche, J.–P., Peyrière, J., Wen, Z.–X. and Wen, Z.–Y.. Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble). 48 (1998), 127.CrossRefGoogle Scholar
Allouche, J.–P. and Shallit, J.. Automatic Sequences: Theory, Applications, Generalisations. (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
Badziahin, D.. Continued fractions of certain Mahler functions. Preprint.Google Scholar
Badziahin, D. and Zorin, E.. Thue–Morse constant is not badly approximable. Int. Math. Res. Not. 19 (2015), 9618–9637.CrossRefGoogle Scholar
Badziahin, D. and Zorin, E.. On generalised Thue–Morse functions and their values. Preprint, https://arxiv.org/abs/1509.00297.Google Scholar
Becker, P. G.. k-regular power series and Mahler-type functional equations. J. Number Theory 49 (1994), 269286.CrossRefGoogle Scholar
Bell, J. P., Bugeaud, Y. and Coons, M.. Diophantine approximation of Mahler numbers. Proc. Lond. Math. Soc. 110 (5) (2015), 11571206.CrossRefGoogle Scholar
Bombieri, E. and van der Poorten, A.J.. Some quantitative results related to Roth's theorem. J. Aust. Math. Soc. 45 (1988), 233248CrossRefGoogle Scholar
Bugeaud, Y.. Extensions of the Cugiani-Mahler theorem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), Vol. 6 (2007), 477498.Google Scholar
Bugeaud, Y.. On the rational approximation to the Thue–Morse–Mahler numbers. Ann. Inst. Fourier. 61 (2011), 20652076.CrossRefGoogle Scholar
Bugeaud, Y., Han, G. N., Wen, Z. Y. and Yao, J. Y. Hankel determinants, Padé approximations and irrationality exponents. Int. Math. Res. Not. 2016 (5) (2016), Art. 13.2.3.CrossRefGoogle Scholar
Coons, M.. On the rational approximation to the sum of reciprocals of the Fermat numbers. Ramanujan J. 30 (2013), 3965.CrossRefGoogle Scholar
Duverney, D., Nishioka, Ke., Nishioka, Ku. and Shiokawa, I.. Transcendence of Jacobi's theta series. Proc. Japan. Acad. Sci, Ser A. 72 (1996), 202203.CrossRefGoogle Scholar
Guo, Y. J., Wen, Z. X. and Wu, W.. On the irrationality exponent of the regular paperfolding numbers. Lin. Alg. Appl. 446 (2014), 237264.CrossRefGoogle Scholar
Hartmanis, J. and Stearns, R. E.. On the computational complexity of algorithms. Trans. Amer. Math. Soc. Vol. 117 (May, 1965), pp. 285-306.CrossRefGoogle Scholar
Liouville, J.. Sur des classes très-étendues de quantités dont la valeur nest ni algébrique, ni même réductible à des irrationnelles algébriques. J. Math. Pures Appl. (1851).Google Scholar
Mahler, K.. Arithmetische Eigenschaften einer Klasse transzendentaltranszendenter Funktionen. Math. Z. 32 (1930), 545-585.CrossRefGoogle Scholar
Nishioka, K.. Mahler Functions and Transcendence. Lecture Notes in Math. 1631 (Springer, 1996).CrossRefGoogle Scholar
van der Poorten, A. J. and Shallit, J. O.. Folded continued fractions. J. Number Theory. 40 (1992), no. 2, 237250.CrossRefGoogle Scholar
van der Poorten, A. J.. Formal power series and their continued fraction expansion. Algorithmic Number Theory. Lecture notes in Computer Science. 1423, (Springer, Berlin, 1998), pp 358–371.Google Scholar
Wen, Z. X. and Wu, W.. Hankel determinant of the Cantor sequence (in Chinese). Scienta Sinica Math. 44 (2014), 10591072.Google Scholar