Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:21:49.271Z Has data issue: false hasContentIssue false

On the generalized helices of Hayden and Sypták in an N-space

Published online by Cambridge University Press:  24 October 2008

Yung-Chow Wong
Affiliation:
King's CollegeLondon

Extract

In this paper we are concerned with curves (C) of the following types:

where k1, k2, …, kh−1, kh = 0 (hn) are the curvatures of (C) relative to the space Vn in which (C) lie. Hayden proved that a curve in a Vn is an (A)2m, h = 2m + 1, if and only if it admits an auto-parallel vector along it which lies in the osculating space of the curve and makes constant angles with the tangent and the principal normals. Independently, Sypták∥ stated without proof that a curve in an Rn is a (B)n if and only if it admits a certain number of fixed R2's having the same angle properties; he also gave to such a curve a set of canonical equations from which many interesting properties follow as immediate consequences.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Borůvka, O.Sur les hypercirconférences et certaines surfaces paraboliques dans l'espace euclidien à quatre dimensions.C.R. Acad. Sci., Paris, 193 (1931), 633–4.Google Scholar
(2)Butchart, J. H.Helices in euclidean n-space.Amer. J. Math. 55 (1933), 126–30.Google Scholar
(3)Duschek, A. and Mayer, W.Lehrbuch der Differentialgeometrie, 2 (1930).Google Scholar
(4)Eisenhart, L. P.Riemannian geometry (1926).Google Scholar
(5)Hayden, H. A.Deformations of a curve in a Riemannian n-space which displace certain vectors parallelly at each point.Proc. London Math. Soc. (2), 32 (1931), 321–36.Google Scholar
(6)Hayden, H. A.On a generalized helix in a Riemannian n-space.Proc. London Math. Soc. (2), 32 (1931), 337–45.Google Scholar
(7)Havelka, B.Sur les courbes dans les espaces euclidiens à n dimensions dont les courbures sont liées pas des relations lineaires à coefficients constants.C.R. Acad. Sci., Paris, 200 (1935), 432–4.Google Scholar
(8)Schouten, J. A. and Struik, J. D.Einführung in die neueren Methoden der Differentialgeometrie, 2 (1938).Google Scholar
(9)Sypták, M.Sur les hypercirconférences et hyperhélices dans les espaces euclidien à p dimensions.C.R. Acad. Sci., Paris, 195 (1932), 298–9.Google Scholar
(10)Sypták, M.Sur les hypercirconférences et hyperhélices généralisées dans les espaces euclidean à p dimensions.C.R. Acad. Sci., Paris, 198 (1934), 1665–7.Google Scholar
(11)Yung-Chow, Wong. ‘On a certain matrix occurring in the theory of helices.J. London Math. Soc. 15 (1940), 168–73.Google Scholar