Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T19:25:41.119Z Has data issue: false hasContentIssue false

On the cobordism groups of immersions and embeddings

Published online by Cambridge University Press:  24 October 2008

András Szücs
Affiliation:
Department of Analysis, Eötvös University, Budapest, Hungary H-1088

Extract

In the present paper we suggest as a cobordism invariant of an immersed or embedded submanifold in Euclidean space the singularity set of its projection to a hyperplane. A similar approach has been employed by Banchoff[1] and Koschorke[6]; see also [15]. We consider the range of dimensions n ≤ 3k where n is the dimension and k is the codimension. We prove that in this range (1) our singularity invariant is complete modulo 2-torsion, and (2) modulo-torsion, it can take any value from Thorm's oriented cobordism group of corresponding dimension for k even, while for k odd this invariant is always trivial.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Banchoff, T.. Triple points and singularities of projections of smoothly immersed surfaces. Proc. Amer. Math. Soc. 46 (1974), 402406.CrossRefGoogle Scholar
[2]Barratt, M. G. and Eccles, P.. Γ+-structures I. Topology 13 (1974), 2545.CrossRefGoogle Scholar
[3]Burlet, O.. Cobordismes de plongements et produits homotopiques. Comment. Math. Helv. 46 (1971), 277288.CrossRefGoogle Scholar
[4]Golubjatnikov, V.. On a cobordism theory. Sibirskij Mat. Journal 20 (1979), 263269.Google Scholar
[5]Jänich, K.. Symmetry properties of singularities of C -functions. Math. Ann. 238 (1978), 147156.CrossRefGoogle Scholar
[6]Koschorke, U.. Vector Fields and Other Vector Bundle Morphisms. Lecture Notes in Math. vol. 847 (Springer-Verlag, 1981).CrossRefGoogle Scholar
[7]Koschorke, U. and Sanderson, B.. Self-intersections and higher Hopf invariants. Topology 17 (1978), 283290.CrossRefGoogle Scholar
[8]Morin, B.. Formes canoniques des singularités d'une application differentiable. C.R. Acad. Sci. Paris 260 (1965), 56625665.Google Scholar
[9]Olk, C.. Immersionen von Mannigfaltigkeiten in euklidische Räume. Dissertation, Universität Siegen (1980).Google Scholar
[10]Pastor, G.. On bordism group of immersions. Proc. Amer. Math. Soc. 283 (1984), 295301.CrossRefGoogle Scholar
[11]Salomonsen, H. A.. On the homotopy groups of Thorn complexes and unstable bordism. In Proceedings of Advanced Study Institute in Algebraic Topology, 1970 (Aarhus University, 1970).Google Scholar
[12]Stong, R. E.. Notes on Cobordism Theory (Princeton University Press and University of Tokyo Press, 1968).Google Scholar
[13]Szücs, A.. An analogue of the Thom space for mappings with singularity of type Σ1. Mat. Sb. (N.S.) 108 (1979), 433456.Google Scholar
[14]Szücs, A.. Cobordism of immersions with restricted selfintersections. Osaka J. Math. 21 (1984), 7180.Google Scholar
[15]Szücs, A.. Cobordism of maps with simplest singularities. In Topology Symposium, Siegen, 1979, Lecture Notes in Math. vol. 788 (Springer-Verlag, 1980), pp. 223244.CrossRefGoogle Scholar
[16]Szücs, A.. Multiple points of singular maps. Math. Proc. Cambridge Philos. Soc. 100 (1986), 331346.CrossRefGoogle Scholar
[17]Szücs, A.. Immersions in bordism classes. Math. Proc. Cambridge Philos. Soc. 103 (1988), 8995.CrossRefGoogle Scholar
[18]Szücs, A.. Universal singular maps. In Proceedings of Topology Conference, Pécs, 1989 (editor Császár, A.), Colloq. Math. Soc. János Bolyai (North-Holland). (Submitted.)Google Scholar
[18]Szücs, A.. To Immersions through Singularities. Regensburger Math. Schriften. (Submitted.)Google Scholar
[19]Wall, C. T. C.. A second note on symmetry of singularities. Bull. London Math. Soc. 12 (1980), 347357.CrossRefGoogle Scholar
[20]Wells, R.. Cobordism of immersions. Topology 5 (1966), 281294.CrossRefGoogle Scholar