Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:39:18.417Z Has data issue: false hasContentIssue false

On some series of functions, (3)

Published online by Cambridge University Press:  24 October 2008

R. E. A. C. Paley
Affiliation:
Trinity College
A. Zygmund
Affiliation:
Trinity College

Extract

We propose here to improve on two of the theorems given earlier, to prove some fresh theorems and to give the proof of Theorem XI stated without proof in the first part of the paper.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1932

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hardy, G. H. and Littlewood, J. E., 1. “A maximal theorem with function-theoretic applications”, Acta Math., 54 (1930), 81116.CrossRefGoogle Scholar
Kaczmarz, S., 1. “Über ein Orthogonalsystem”, Comptes rendus du premier congrès des Math. det Pays slaves, Varsovie, 1929, 189192.Google Scholar
Paley, R. E. A. C., 2, 3. “A remarkable series of orthogonal functions”, Proc. London Math. Soc. (2), to be published.Google Scholar
Pólya, G., 1. “Lücken und Singularitäten von Potenzreihen”, Math. Zeitschrift, 29 (1929), 549640.CrossRefGoogle Scholar
Steinhaus, H., 1. “Über die Wahrscheinlichkeit dafür daß der Konvergenzkreis einer Potenzreihe ihre natürliche Grenze ist”, Math. Zeitschrift, 21 (1929), 408416.Google Scholar
Szász, O., 1. “Über Singularitäten von Potenzreihen und Dirichletschen Reihen aus Rande des Konvergenzbereiches”, Math. Annalen, 85 (1922), 99110.CrossRefGoogle Scholar
Walsh, J. L., 1. “A closed set of normal orthogonal functions”, American Journal of Math., 55 (1923), 524.CrossRefGoogle Scholar
Zygmund, A., 3. “Über einige Sätze aus der Theorie der divergenten Reihen”, Bull. de l'Acad. Polonaise (1927), 309331.Google Scholar