Published online by Cambridge University Press: 24 October 2008
Multilattice groups have been introduced by Benado ((1)) and considered by Vaida ((9)), who has initiated the study of the structure of a class of these groups. The purpose of this paper is to further the investigation begun by Vaida.
Basic in the work contained here is the set H consisting of the differences between the minimal upper bounds of pairs of elements of a multilattice group G. By means of conditions imposed on G and based on H, we determine the structure of the congruence relations on a multilattice group and study direct sums and lexicographic products and extensions of such groups (sections 2, 3).