Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T15:39:40.791Z Has data issue: false hasContentIssue false

On harmonic functions which take integer values on integer lattices

Published online by Cambridge University Press:  24 October 2008

D. H. Armitage
Affiliation:
Queen's University, Belfast

Extract

Throughout this paper α denotes a number larger than 1 and C denotes the complex plane. Pó1ya(15),(16) (see also Hardy(10) and Landau(13)) proved the following results.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Armitage, D. H.A linear function from a space of polynomials onto a space of harmonic polynomials. J. London Math. Soc. (2) 5 (1972), 529538.CrossRefGoogle Scholar
(2)Armitage, D. H.On harmonic polynomials. Proc. London Math. Soc. (3) 34 (1977), 173192.CrossRefGoogle Scholar
(3)Armitage, D. H.Uniqueness theorems for harmonic function which vanish at lattice points. J. Approximation Theory (submitted).Google Scholar
(4)Armitage, D. H.On the derivatives at the origin of entire harmonic functions. Proc. Glasgow Math. Assoc. (in the Press).Google Scholar
(5)Baker, A.A note on integral integer-valued function of several variables. Proc. Cambridge Philos. Soc. 63 (1967), 715720.CrossRefGoogle Scholar
(6)Brelot, M.Éléments de la théorie classique du potentiel (3rd ed.Paris, 1965).Google Scholar
(7)Buck, R. C.Integral valued entire functions. Duke Math. J. 15 (1948), 879891.CrossRefGoogle Scholar
(8)Gelfond, A. O.Sur les propriétés arithmétiques des fonctions entières. Tôhoku Math. J. 30 (1929), 280285.Google Scholar
(9)Gramain, F.Sur les fonctions entières de plusieurs variables complexes prenant des valeurs algébriques aux points entiers. C. R. Acad. Sci. Paris 284 (1977), 1719.Google Scholar
(10)Hardy, G. H.On a theorem of Mr G. Pó1ya. Proc. Cambridge Philos. Soc. 19 (1920), 6063.Google Scholar
(11)Hayman, W. K.Power series expansions for harmonic functions. Bull. London Math. Soc. 2 (1970), 152158.CrossRefGoogle Scholar
(12)Kuran, Ü.On Brelot–Choquet axial polynomials. J. London Math. Soc. (2) 4 (1971), 1526.CrossRefGoogle Scholar
(13)Landau, E.On Mr. Hardy's extension of a theorem of Mr. Pólya. Proc. Cambridge Philos. Soc. 20 (1920), 1415.Google Scholar
(14)Lang, S.Algebraic values of meromorphic functions. Topology 3 (1965), 183191.CrossRefGoogle Scholar
(15)Pólya, G.Über ganzwertige ganze Funktionen. Rend. Circ. Mat. Palermo 40 (1915), 116.CrossRefGoogle Scholar
(16)Pólya, G.Über ganze ganzwertige Funktionen. Göttingen Nachrichten (1920), 110.Google Scholar
(17)Selberg, A.Über einen Satz von A. Gelfond. Arch. Math. Naturvid. 44 (1941), 159170.Google Scholar
(18)Straus, E. G.On entire functions with algebraic derivatives at certain algebraic points. Ann. of Math. (2) 52 (1950), 188198.CrossRefGoogle Scholar
(19)Whittaker, J. M.Interpolatory function theory (Cambridge, 1935).Google Scholar