Published online by Cambridge University Press: 01 March 2008
We give an interpretation of the Chern–Heinz inequalities for graphs in order to extend them to transversally oriented codimension one C2-foliations of Riemannian manifolds. It contains Salavessa's work on mean curvature of graphs and fully generalizes results of Barbosa–Kenmotsu–Oshikiri [3] and Barbosa–Gomes–Silveira [2] about foliations of 3-dimensional Riemannian manifolds by constant mean curvature surfaces. This point of view of the Chern–Heinz inequalities can be applied to prove a Haymann–Makai–Osserman inequality (lower bounds of the fundamental tones of bounded open subsets Ω ⊂ ℝ2 in terms of its inradius) for embedded tubular neighbourhoods of simple curves of ℝn.