Published online by Cambridge University Press: 24 October 2008
We fix a number field L and a finite group G, and write Cl (ℤL[G]) for the reduced Grothendieck group of the category of finitely generated projective ℤL[G]-modules. We let RG denote the ring of complex characters of G, with SG the additive subgroup which is generated by the irreducible symplectic characters. We shall say that an element c ∈ Cl (ℤL[G]) is ‘(arithmetically) realizable’ if there exists a tamely ramified Galois extension N/K of number fields with L ⊆ K and an identification Gal (N/K) →˜ G via which c is the class of some Gal (N/K)-stble ℤN-ideal. We let RL(G) denote the subgroup of Cl (ℤL[G]) which is generated by the realizable elements for varying N/K. Our interest in RL(G) arises from the fact that it is the largest subset of Cl (ℤL[G]) upon which the results of Chinburg and the author in [Bu, Ch] can be used to give an explicit module theoretic description of the action of the integral semi-group ring AL, G of the Adams-Cassou-Noguès-Taylor operators (ΨL, k): k ∈ ℤ, 2 × k if SG ≠ {0}}. Whilst the results of [Bu, Ch] can (at least partially) be understood ‘geometrically’ via the action of Bott cannibalistic elements on suitable Grothendieck groups (cf. [Ch, E, P, T], [Bu]), the underlying problem of finding an explicit module theoretic interpretation of the action of AL, G on all elements of Cl(ℤL[G]) is of course essentially algebraic in nature. It is in this context that we were originally motivated to investigate RL(G).