Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:08:15.536Z Has data issue: false hasContentIssue false

On approximations to the densities and moments of a class of stochastic systems

Published online by Cambridge University Press:  24 October 2008

F. Kozin†
Affiliation:
Purdue University and University College London

Extract

This paper is concerned with a study of a class of stochastic processes that we shall call weakly non-deterministic.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Grenander, U., Probability and statistics. The Harald Cramer volume, pp. 108129 (Wiley; New York, 1959).Google Scholar
(2)Bellman, R., Adaptive control processes; a guided tour, ch. IX (Princeton, 1961).CrossRefGoogle Scholar
(3)Samuels, J. C., and Eringen, A. C., On stochastic linear systems. J. Math. Phys. 38 (1959), 83103.CrossRefGoogle Scholar
(4)Montroll, E. W., Theory of the vibrational relaxation of diatomic molecules. Proceedings of the International Symposium on Transport Processes in Statistical Mechanics; Brussels, 1956, pp. 351361 (Interscience; New York, 1958).Google Scholar
(5)Kozin, F., On the probability densities of the output of some random systems. J. Appl. Mech. 28 (1961), 161164.CrossRefGoogle Scholar
(6)Arley, N., On the theory of stochastic processes and their applications to the theory of cosmic radiation (Wiley; New York, 1948).Google Scholar
(7)Whittle, P., Certain non-linear models of population and epidemic theory. Skand. Aktuarietidskr. 35 (1952), 211222.Google Scholar
(8)Weber, M., The fundamental solution of a degenerate partial differential equation of elliptic type. Trans. American Math. Soc. 71 (1952), 2337.Google Scholar
(9)Feller, W., Some recent trends in the mathematical theory of diffusion. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 322339 (American Math. Soc; Providence, R.I., 1952).Google Scholar
(10)Sneddon, I. N., Elements of partial differential equations, ch. II (McGraw-Hill; New York, 1957).Google Scholar
(11)Moyal, J. E., Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 45 (1949), 99129.CrossRefGoogle Scholar
(12)Kirkwood, J. G., and Ross, , John, . The statistical mechanical basis of the Boltzmann equation. Proceedings of the International Symposium on Transport, pp. 17 (Interscience; New York, 1958).Google Scholar
(13)Bartlett, M. S., Stochastic processes, ch. I (Cambridge, 1955).Google Scholar
(14)Loève, M., Probability theory, 2nd ed., chs. X, XX (van Nostrand; Princeton, 1960).Google Scholar
(15)Doob, J. L., Stochastic processes, ch. XI (Wiley; New York, 1953).Google Scholar
(16)Kryloff, N., and Bogoliouboff, N., Sur les équations de Focker-Planck déduits dans la théorie des perturbations à l'aide de l'hamiltonian perturbateur. Ann. Ukrain. Acad. Sci. Inst. Mech. 4 (1939), 81157.Google Scholar
(17)Prigogine, I., and Brout, R., Irreversible processes in weakly coupled systems. Proceedings of the International Symposium on Transport Processes in Statistical Mechanics, Brussels, 1956, pp. 2532 (Interscience; New York, 1958).Google Scholar
(18)Blackman, N. M., On the effect of noise in a non-linear control system. Proceedings of the First International Congress of the International Federation of Automatic Control, Moscow, 1960, vol. 2, pp. 770773 (Butterworths; London, 1961).Google Scholar
(19)Whittle, P., On the use of the normal approximation in the treatment of stochastic processes. J. Roy. Statist. Soc. Ser. B, 19 (1957), 268281.Google Scholar
(20)Friedman, B., Principles and techniques of applied mathematics, ch. V (Wiley; New York, 1956).Google Scholar
(21)Volterra, V., Theory of functionals, ch. I (Blackie; London, 1931).Google Scholar
(22)Bogdanoff, J. L., Influence on the behavior of a linear dynamical system of some imposed rapid motions of small amplitude. J. Acoust. Soc. America, 34 (1962), 10551062.CrossRefGoogle Scholar
(23)Bogdanoff, J. L., and Kozin, F., Moments of the output of linear random systems. J. Acoust. Soc. America, 34 (1962), 10631066.CrossRefGoogle Scholar