Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T13:08:01.657Z Has data issue: false hasContentIssue false

On a class of non-homogeneous Markov chains

Published online by Cambridge University Press:  24 October 2008

Harry Cohn
Affiliation:
University of Melbourne

Abstract

Suppose that {Xn} is a countable non-homogeneous Markov chain and

If converges for any i, l, m, j with , then

whenever lim , whereas if converges, then

where and . The behaviour of transition probabilities between various groups of states is studied and criteria for recurrence and transience are given.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Cohn, H.On the Borel-Cantelli Lemma. Israel J. Math. 12 (1972), 1116.CrossRefGoogle Scholar
(2)Cohn, H.On the tail events of a Markov chain. Z. Wahrscheinlichkeits. 29 (1974), 6572.CrossRefGoogle Scholar
(3)Cohn, H.A ratio limit theorem for the finite non-homogeneous Markov chains. Israel J. Math. 19 (1974), 329334.CrossRefGoogle Scholar
(4)Cohn, H.Finite non-homogeneous Markov chains: Asymptotic behaviour. Adv. Appl. Probab. 8 (1976), 502516.CrossRefGoogle Scholar
(5)Cohn, H.Countable non-homogeneous Markov chains: Asymptotic behaviour. Adv. Appl. Probab. 9 (1977), 542552.CrossRefGoogle Scholar
(6)Cohn, H.On a paper by Doeblin on non-homogeneous Markov chains. Adv. Appl. Probab. 13 (1981), 388401.CrossRefGoogle Scholar
(7)Iosifescu, M.On finite tail σ-algebras. Z. Wahrscheinlichkeits. 24 (1972), 159166.CrossRefGoogle Scholar
(8)Kingman, J. F. C.Geometrical aspects of the theory of non-homogeneous Markov chains. Math. Proc. Cambridge Phil. Soc. 77 (1975), 171185.CrossRefGoogle Scholar
(9)Maksimov, V. M.Convergence of non-homogeneous bistochastic Markov chains. Theor. Probab. Appl. 15 (1970), 604618.CrossRefGoogle Scholar
(10)Mukherjea, A. Limit theorems: Stochastic matrices, ergodic Markov chains, and measures on semigroups. Probabilistic Analysis and Related Topics, vol. 2 (Academic Press, 1979), pp. 143203.CrossRefGoogle Scholar
(11)Mukherjea, A.A new result on the convergence of non-homogeneous stochastic chains. Trans. Amer. Math. Soc. 262 (1980), 505520.CrossRefGoogle Scholar
(12)Mukherjea, A. and Chaudhuri, R.Convergence of non-homogeneous stochastic chains II. Math. Proc. Cambridge Phil. Soc. 90 (1981), 167182.CrossRefGoogle Scholar
(13)Mukherjea, A. and Nakassis, A. Convergence of non-homogeneous stochastic chains with countable states: An application to measures on semigroups. (Preprint.)Google Scholar
(14)Senchenko, D. V.The final σ-algebra of an inhomogeneous Markov chain with a finite number of states. Math. Notes 12 (1972), 610613.CrossRefGoogle Scholar