Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T19:41:22.429Z Has data issue: false hasContentIssue false

A note on variational theorems in non-linear elastostatics

Published online by Cambridge University Press:  24 October 2008

R. W. Ogden
Affiliation:
University of Bath

Extract

In a recent paper Koiter (5) discussed a principle of stationary complementary energy for the finite deformation of elastic materials. The complementary energy functional he uses depends only on the components of the nominal stress, and not on the displacement field. He, incorrectly, attributes the principle to Zubov (14).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Fraeijs De Veubeke, B. M.Int. J. Eng. Sci. 10 (1972), 745763.CrossRefGoogle Scholar
(2)Hill, R.J. Mech. Phys. Solids 5 (1956), 6674.CrossRefGoogle Scholar
(3)Hill, R.. J. Mech. Phys. Solids 15 (1967), 371386.CrossRefGoogle Scholar
(4)Hill, R.J. Mech. Phys. Solids 16 (1968), 229242.CrossRefGoogle Scholar
(5)Koiter, W. T.SIAM J. Appl. Math. 25 (1973), 424434.CrossRefGoogle Scholar
(6)Levinson, M.J. Appt. Mech. 32 (1965), 826828.CrossRefGoogle Scholar
(7)Nemat-Nasser, S.Quart. Appl. Math. 30 (1972), 143156.CrossRefGoogle Scholar
(8)Reissner, E.J. Math. and Phys. 32 (1953), 129135.CrossRefGoogle Scholar
(9)Sewell, M. J.Philos. Trans. Roy. Soc. London Ser. A 265 (1969), 319351.Google Scholar
(10)Sokolnikoff, I. S.The mathematical theory of elasticity (McGraw-Hill; New York, 1956).Google Scholar
(11)Truesdell, C. & Noll, W.The non-linear field theories of mechanics. Handbuch der Physik, vol. III/3 (Springer; Berlin, Heidelberg, New York, 1965).Google Scholar
(12)Truesdell, C. & Toupin, R. A.The classical field theories. Handbuch der Physik, vol. III/1 (Springer; Berlin, Heidelberg, New York, 1960).Google Scholar
(13)Washizu, K.Variational methods in elasticity and plasticity (Pergamon; Oxford, 1968).Google Scholar
(14)Zubov, L. M.Prikl. Mat. Meh. 34 (1970), 228232.Google Scholar
(15)Dill, E. H. University of Washington, College of Engineering, Report no. 74–1 (1974).Google Scholar