Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:05:54.510Z Has data issue: false hasContentIssue false

A note on the subnormal structure of general linear groups

Published online by Cambridge University Press:  24 October 2008

N. A. Vavilov
Affiliation:
Department of Mathematics and Mechanics, Leningrad State University, Leningrad, U.S.S.R.

Extract

The purpose of this note is to improve results of J. S. Wilson[12] and L. N. Vaserstein [10] concerning the subnormal structure of the general linear group G = GL (n, R) of degree n ≽ 3 over a commutative ring R. To do this we sharpen results of J. S. Wilson[12], A. Bak[1] and L. N. Vaserstein[10] on subgroups normalized by a relative elementary subgroup. It should be said also that (especially for the case n = 3) our proof is very much simpler than that of[12, 10]. To formulate our results let us recall some notation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bak, A.. Subgroups of the general linear group normalized by relative elementary groups. In Algebraic K-theory, Lecture Notes in Math. vol. 967 (Springer-Verlag, 1980), pp. 122.Google Scholar
[2]Bass, H.. K-theory and stable algebra. Inst. Hautes Etudes Sci. Publ. Math. 22 (1964), 485544.CrossRefGoogle Scholar
[3]Borewicz, Z. I. and Vavilov, N. A.. The distribution of subgroups in the general linear group over a commutative ring. Trudy Mat. Inst. Steklov 165 (1984), 2442 (in Russian, translated in Proc. Steklov Inst. Math.).Google Scholar
[4]Golubchik, I. Z.. On the general linear group over an associative ring. Uspekhi Mat. Nauk 23 (1973), 179180 (in Russian).Google Scholar
[5]Suslin, A. A.On the structure of the special linear group over polynomial rings. Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 235252 (in Russian, translated in Soviet Math. Izv.).Google Scholar
[6]Taddei, G.. Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau. Contemp. Math. 55 (1986), 693710.CrossRefGoogle Scholar
[7]Tulenbaev, M. S.The Schur multiplier of the group of elementary matrices of finite order. Zap. Nauchn. Sem. Leningrad: Otdel. Mat. Inst. Steklov (LOMI) 86 (1979), 162169 (in Russian, translated in J. Soviet Math.).Google Scholar
[8]Vaserstein, L. N. On normal subgroups of GL n over a ring. In Algebraic K-theory, Evanston 1980, Lecture Notes in Math. vol. 854 (Springer-Verlag, 1981), pp. 456465.CrossRefGoogle Scholar
[9]Vaserstein, L. N.Classical groups over rings. Canad. Math. Soc. Conf. Proc. 4 (1984), 131140.Google Scholar
[10]Vaserstein, L. N.The subnormal structure of general linear groups. Math. Proc. Cambridge Philos. Soc. 99 (1986), 425431.CrossRefGoogle Scholar
[11]Vaserstein, L. N.On normal subgroups of Chevalley groups over commutative rings. Tohoku Math. J. 38:2 (1986), 219230.CrossRefGoogle Scholar
[12]Wilson, J. S.The normal and subnormal structure of general linear groups. Proc. Cambridge Philos. Soc. 71 (1972), 163177.CrossRefGoogle Scholar
[13]Zalesskii, A. E.Linear groups. In Itogi nauki: Algebra, Topologia. Geometria 21 (1983), 135182 (in Russian, translated in J. Soviet Math.).Google Scholar