Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T01:48:53.905Z Has data issue: false hasContentIssue false

A note on the number of solutions Np of the congruence y2x3Dx(mod p)

Published online by Cambridge University Press:  24 October 2008

A. R. Rajwade
Affiliation:
Panjab University, Chandigarh 14, India

Extract

The object of this note is the following theorem together with a table of the (1 + i)n division points for n = 1, 2, 3, 4, 5 on the elliptic curve y2 = x3Dx which has complex multiplication by i = √(−1).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Davenport, H. and Hasse, H.Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklisohen Fallen. J. Reine Angew. Math. 172 (1934), 151182.Google Scholar
(2)Deuring, M.Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg 14 (1941), 197272.CrossRefGoogle Scholar
(3)Deuring, M.Die Zetafunktion einer algebraischen kurve vom Geschlecht Eins. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. I 1953, 8594Google Scholar
Deuring, M.Die Zetafunktion einer algebraischen kurve vom Geschlecht Eins. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. II 1955, 1342Google Scholar
Deuring, M.Die Zetafunktion einer algebraischen kurve vom Geschlecht Eins. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. III 1956, 18113Google Scholar
Deuring, M.Die Zetafunktion einer algebraischen kurve vom Geschlecht Eins. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IV 1957, 5580.Google Scholar