Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T09:36:25.506Z Has data issue: false hasContentIssue false

Non-linear angle-sum relations for polyhedral cones and polytopes

Published online by Cambridge University Press:  24 October 2008

P. McMullen
Affiliation:
University College, London

Abstract

It is shown that the internal and external angles at the faces of a polyhedral cone satisfy various bilinear relations. The first two of these are related to the Gauss–Bonnet and Steiner parallel formulae for spherical polytopes, while the third is completely new. However, the proofs are basically combinatorial in nature, rather than differential geometric, as in the more classical treatments. These relations lead to inversion formulae, analogous to Euler-type relations, for certain functions defined on polytopes and polyhedral cones. As a result, various new relations involving quermassintegrals and Grassmann angles are found; there is also an application to lattice polytopes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Allendoerfer, C. B.Steiner's formula on ageneral S n+1. Bull. Amer. Math. Soc. 54 (1948), 128135. MR 9–607.CrossRefGoogle Scholar
(2)Allendoerfer, C. B. and Weil, A.The Gauss–Bonnet formula for Riemannian polyhedra. Trans. Amer. Math. Soc. 53 (1943), 101129. MR 4–169.CrossRefGoogle Scholar
(3)Bokowski, J. Lattice polyhedra and Wills' conjecture. Abstract, International Congress of Mathematicians (Vancouver, 1974).Google Scholar
(4)Bonnesen, T. and Fenchel, W.Theorie der konvexen Körper. (Springer, Berlin, 1934; reprinted 1974).Google Scholar
(5)Ehrhart, E.Démonstration de la loi de réciprocité pour un polyèdre entier. C. R. Acad. Sci. Paria 265A (1967), 57. MR 39 #6826.Google Scholar
(6)Ehrhart, E.Sur un problème de géométrie diophantienne linéaire. J. Reine Angew. Math. 226 (1967), 129. MR 35 #4184.Google Scholar
(7)Gram, J. P.Om rumvinklerne i et Polyeder. Tidsskr. Math. (Copenhagen) (3) 4 (1874), 161163.Google Scholar
(8)Grünbaum, B.Convex polytopes. Wiley (London, New York, Sydney, 1967). MR 37 #2085.Google Scholar
(9)Grünbaum, B.Grassmann angles of convex polytopes. Acta Math. 121 (1968), 293302. MR 38 #6455.CrossRefGoogle Scholar
(10)Hadwiger, H.Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. (Springer, Berlin, Göttingen, Heidelberg, 1957). MR 21 ##1561.CrossRefGoogle Scholar
(11)Hadwiger, H. and Schneider, R.Vektorielle Integralgeometrie. Elem. Math. 26 (1971), 4957. MR 44 #967.Google Scholar
(12)Herglotz, G.Ueber die Steinersche Formel für Parallelflächen. Abh. Math. Sem. Univ. Hamburg 15 (1943), 165177. MR 7–475.CrossRefGoogle Scholar
(13)Larman, D. G. and Mani, P.Gleichungen und Ungleichungen für Geruste die von konvexen Polytopen und Zellenkomplexen. Comment. Math. Helv. 45 (1970), 199218. MR 44 #2138.CrossRefGoogle Scholar
(14)MacDonald, I. G.The volume of a lattice polyhedron. Proc. Cambridge Philos. Soc. 59 (1963), 719726. MR 27 #4139.CrossRefGoogle Scholar
(15)MacDonald, I. G.Polynomials associated with finite cell complexes. J. London Math. Soc. (2) 4 (1971), 181192. MR 45 #7594.CrossRefGoogle Scholar
(16)McMullen, P. and Shephard, G. C. Convex polytopes and the upper bound conjecture. London Math. Soc. Lecture Notes Series, Vol. 3 (Cambridge, 1971). MR 46 #791.Google Scholar
(17)McMullen, P. and Wills, J. M.Zur Gitterpunktanzahl auf dem Rand konvexer Körper. Monatsh. Math. 77 (1973), 411415.CrossRefGoogle Scholar
(18)Overhagen, T. Zur Gitterpunktanzahl konvexer Körper. Dissertation, TU Berlin (1974).Google Scholar
(19)Perles, M. A. and Sallee, G. T.Cell-complexes, valuations and the Euler relation. Canad. J. Math. 22 (1970), 235241. MR 41 #7530.CrossRefGoogle Scholar
(20)Reeve, J. E.On the volume of lattice polyhedra. Proc. London Math. Soc. (3) 7 (1957), 378395. MR 20 #1954.CrossRefGoogle Scholar
(21)Reeve, J. E.A further note on the volume of lattice polyhedra. J. London Math. Soc. (1) 34 (1959), 5762. MR 20 ##7242.CrossRefGoogle Scholar
(22)Rota, G.-C.On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie 2 (1964), 340368. MR 30 #4688.CrossRefGoogle Scholar
(23)Rota, G.-C. On the combinatorias of the Euler characteristic. Studies in Pure Mathematics (Presented to Richard Rado), 221233. (Academic Press, London, 1971). MR 44 #126.Google Scholar
(24)Sallee, G. T.Polytopes, valuations and the Euler relation. Canad. J. Math. 20 (1968), 14121424. MR 38 #605.CrossRefGoogle Scholar
(25)Saantaló, L. A.Geometria integral en espacios de curvatura constante. Rep. Argentina Publ. Com. Nac. Energia Atomica, Ser. Mat. 1 No. 1 (1952). MR 14–496.Google Scholar
(26)Santaló, L. A.Sobre la formula de Gaum-Bonnet para poliedros en espacios de curvatura constante. Rev. Un. Mat. Argentina 20 (1962), 7991. MR 26 #6904.Google Scholar
(27)Santaló, L. A.Sobre la formula fundamental cinematica de la geometric integral en espacios de curvatura constante. Math. Notae 18 (1962), 7994. MR 27 #5213.Google Scholar
(28)Schneider, R.Krümmungsschwerpunkte konvexer Körper I. Abh. Math. Sena. Univ. Hamburg 37 (1972), 112132. MR 46 #6160.CrossRefGoogle Scholar
(29)Shephard, G. C.Euler-type relations for convex polytopes. Proc. London Math. Soc. (3) 18 (1968), 597606. MR 38 #606.CrossRefGoogle Scholar
(30)Sommerville, D. M. Y.The relations connecting the angle sums and volume of a polytope in space of n dimensions. Proc. R. Soc. London, Ser. A, 115 (1927), 103119.Google Scholar
(31)Wills, J. M.Zur Gitterpunktanzahl konvexer Mengen. Elem. Math. 28 (1973), 5763.Google Scholar