Published online by Cambridge University Press: 14 March 2002
Solutions to the Schrödinger, heat and stochastic Schrödinger equation with rather general potentials are represented, both in x- and p-representations, as integrals over the path space with respect to σ-finite measures. In the case of x-representation, the corresponding measure is concentrated on the Cameron–Martin Hilbert space of curves with L2-integrable derivatives. The case of the Schrödinger equation is treated by means of a regularization based on the introduction of either complex times or continuous non-demolition observations.