Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T01:03:00.905Z Has data issue: false hasContentIssue false

Multiple points for symmetric Lévy processes

Published online by Cambridge University Press:  24 October 2008

John Hawkes
Affiliation:
University College of Swansea

Extract

Let Xt be a Lévy process in Rd, d-dimensional euclidean space. That is X is a Markov process whose transition function satisfies

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Blumenthal, R. M. and Getoor, R. K. Markov processes and potential theory (New York: Academic Press, 1968).Google Scholar
(2) Dvoretsky, A., Erdös, P. and Kakutani, S. Double points of paths of Brownian motion in n-space. Acta Sci. Math. (Szeged) 12 (1950), 7581.Google Scholar
(3) Dvoretsky, A., Erdös, P. and Kakutani, S. Multiple points of paths of Brownian motion in the plane. Bull. Research Council of Israel, Section F 3 (1954), 364371.Google Scholar
(4) Dvoretsky, A., Erdös, P. and Kakutani, S. Points of multiplicity c of plane Brownian paths. Bull. Research Council of Israel, Section F 7 (1958), 175180.Google Scholar
(5) Dvoretsky, A., Erdös, P., Kakutani, S. and Taylor, S. J. Triple points of Brownian paths in 3 space. Proc. Cambridge Philos. Soc. 53 (1957), 856862.CrossRefGoogle Scholar
(6) Fristedt, Bert E. An extension of a Theorem of S. J. Taylor concerning the multiple points of the symmetric stable process. Z. Wahrscheinlichkeitstheorie verw. Geb. 9 (1967), 6264.CrossRefGoogle Scholar
(7) Frostman, O. Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Lund Univ. Thesis, 1935.Google Scholar
(8) Hendricks, W. J. Multiple points for a process in R 2 with stable components. Z. Wahrscheinlichkeitatheorie verw. Geb. 28 (1974), 113128.CrossRefGoogle Scholar
(9) Hendricks, W. J. and Taylor, S. J. Concerning some problems about polar sets for processes with stationary independent increments. Privately circulated, 1976.Google Scholar
(10) Kahane, J. -P. Some random series of functions (Lexington: D. C. Heath and Co., 1968).Google Scholar
(11) Orey, S. Polar sets for processes with stationary and independent increments. In Markov processes and potential theory, ed. Choyer, J. (New York: Wiley, 1967).Google Scholar
(12) Pruitt, W. E. The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969), 371378.Google Scholar
(13) Pruitt, W. E. Some dimension results for processes with independent increments. In Stochastic processes and related topics, ed. Puri, M. L. (Academic Press, 1975).Google Scholar
(14) Takeuchi, J. On the sample paths of the symmetric stable processes in spaces. J. Math. Soc. Japan 16 (1964), 109127.Google Scholar
(15) Taylor, S. J. Multiple points for the sample paths of the symmetric stable process. Z. Wahrscheinlichkeitstheorie verw. Geb. 5 (1966), 247264.CrossRefGoogle Scholar
(16) Taylor, S. J. Sample path properties of a transient stable process. J. Math. Mech. 16 (1967), 12291246.Google Scholar