Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T09:53:40.448Z Has data issue: false hasContentIssue false

Minimal ideals in group algebras and their biduals

Published online by Cambridge University Press:  24 October 2008

J. W. Baker
Affiliation:
School of Mathematics & Statistics, University of Sheffield, Sheffield S3 7RH
M. Filali
Affiliation:
Department of Mathematics, University of Oulu, Oulu 90570, Finland

Abstract

Let G be a locally compact group and F a left introverted subalgebra of C(G). For each of the algebras L1(G), M(G), F* and L(G)* we determine the finite-dimensional minimal left ideals of the algebra (if any); in some cases we also determine the finite-dimensional minimal two-sided ideals, and in certain cases show that all minimal ideals of the algebra are finite-dimensional.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Berlund, J. F., Junghenn, H. D. and Milnes, P.. Analysis on semigroups: function spaces, compactifications, representations (Wiley, 1989).Google Scholar
[2]Bonsall, F. F. and Duncan, J.. Complete normed algebras (Springer-Verlag, 1973).CrossRefGoogle Scholar
[3]Filali, M.. The uniform compactification of a locally compact abelian group. Math. Proc. Cambridge Philos. Soc. 108 (1990), 527538.CrossRefGoogle Scholar
[4]Filali, M.. The ideal structure of some Banach algebras. Math. Proc. Cambridge Philos. Soc. 111 (1992), 567576.CrossRefGoogle Scholar
[5]Filali, M.. Linear equations in B(ℤ). Math. Proc. Roy. Soc. Edinburgh, Series A 123 (1993), 10011009.CrossRefGoogle Scholar
[6]Hewitt, E. and Ross, K. A.. Abstract harmonic analysis, vol. 1 (Springer-Verlag, 1963).Google Scholar
[7]Hewitt, E. and Ross, K. A.. Abstract harmonic analysis, vol. 2 (Springer-Verlag, 1970).Google Scholar
[8]Lashkarizadeh-Bami, M.. Representations of foundation semigroups and their algebras. Canadian J. Math. 37 (1985), 2947.CrossRefGoogle Scholar
[9]Loomis, L. H.. An introduction to abstract harmonic analysis (Van Nostrand, 1953).Google Scholar
[10]Paterson, A. L. T.. Amenability (American Mathematical Society, 1988).CrossRefGoogle Scholar
[11]Pym, J. S.. Compact semigroups with one-sided continuity; in The analytical and topological theory of semigroups (ed.Hoffman, K. H. et al. , de Gruyter, 1990), 197217.CrossRefGoogle Scholar
[12]Rickart, C. E.. General theory of Banach algebras (Van Nostrand, 1960).Google Scholar