Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T13:29:30.519Z Has data issue: false hasContentIssue false

Metabelian SL(n, $\mathbb C$) representations of knot groups IV: twisted Alexander polynomials

Published online by Cambridge University Press:  20 September 2013

HANS U. BODEN
Affiliation:
Mathematics & Statistics, McMaster University, Hamilton, Ontario, L8S-4K1, Canada. e-mail: [email protected]
STEFAN FRIEDL
Affiliation:
Mathematisches Institut, Universität zu Köln, 50931 Köln, Germany e-mail: [email protected]

Abstract

In this paper we will study properties of twisted Alexander polynomials of knots corresponding to metabelian representations. In particular we answer a question of Wada about the twisted Alexander polynomial associated to the tensor product of two representations, and we settle several conjectures of Hirasawa and Murasugi.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Boden, H. U. and Friedl, S.Metabelian SL(n, ${\mathbb C}$) representations of knot groups. Pacific J. Math. 238 (2008), 725.CrossRefGoogle Scholar
[2]Boden, H. U. and Friedl, S.Metabelian SL(n, ${\mathbb C}$) representations of knot groups II: fixed points. Pacific J. Math. 249 (2011), 110.CrossRefGoogle Scholar
[3]Boden, H. U. and Friedl, S. Metabelian SL(n, $\mathbb C$) representations of knot groups III: deformations. Preprint (2012), math.GT 1208.1708. To appear in Q. J. Math.Google Scholar
[4]Cha, J. C. and Friedl, S.Twisted torsion invariants and link concordance. Forum Math. 25 (2013), 471504.Google Scholar
[5]Cha, J. C. and Livingston, C. KnotInfo: table of knot invariants. Online at http://www.indiana.edu/~knotinfo (September 1, 2012).Google Scholar
[6]Friedl, S.Eta invariants as sliceness obstructions and their relation to Casson–Gordon invariants. Alg. Geom. Topol. 4 (2004), 893934.CrossRefGoogle Scholar
[7]Friedl, S. KnotTwister (2012), http://www.mi.uni-koeln.de/~stfriedl.Google Scholar
[8]Friedl, S. and Vidussi, S.A survey of twisted Alexander polynomials. The Mathematics of Knots. 45–94, Contrib. Math. Comput. Sci., 1 (Springer, Heidelberg, 2011).Google Scholar
[9]Herald, C., Kirk, P. and Livingston, C.Metabelian representations, twisted Alexander polynomials, knot slicing and mutation. Math. Zeit. 265 (2010), 925949.CrossRefGoogle Scholar
[10]Hirasawa, M. and Murasugi, K. Twisted Alexander polynomials of 2-bridge knots associated to metabelian representations, 2009 preprint math.GT 0903.1689.Google Scholar
[11]Hirasawa, M. and Murasugi, K. Twisted Alexander polynomials of 2-bridge knots associated to metacyclic representations. Preprint (2009) math.GT 0903.0147.Google Scholar
[12]Hoste, J. and Shanahan, P.Twisted Alexander polynomials of 2-bridge knots. J. Knot Theory Ramifications 22, no. 1 (2013), 129.CrossRefGoogle Scholar
[13]Kirk, P. and Livingston, C.Twisted Alexander invariants, Reidemeister torsion and Casson–Gordon invariants. Topology 38, no. 3 (1999), 635661.CrossRefGoogle Scholar
[14]Kitano, T.Twisted Alexander polynomials and Reidemeister torsion. Pacific J. Math. 174, no. 2 (1996), 431442.CrossRefGoogle Scholar
[15]Lang, S.Algebra. (3rd revised ed.). Graduate Texts in Mathematics, 211 (Springer-Verlag, New York, 2002).CrossRefGoogle Scholar
[16]Lin, X. S.Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin. (Engl. Ser.) 17, no. 3 (2001), 361380.CrossRefGoogle Scholar
[17]Stein, W. A.et al. Sage Mathematics Software (Version 4ċ8), (The Sage Development Team, 2012), http://www.sagemath.orgGoogle Scholar
[18]Stoimenov, A. A table of braid descriptions of knots through 12 crossings (2012), http://stoimenov.net/stoimeno/homepage/ptab/braid.outGoogle Scholar
[19]Wada, M.Twisted Alexander polynomial for finitely presentable groups. Topology 33, no. 2 (1994), 241256.CrossRefGoogle Scholar
[20]Wada, M.Twisted Alexander polynomial revisited. RIMS Kôkyûroku 1747 (2011), 140144.Google Scholar