Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T01:58:54.817Z Has data issue: false hasContentIssue false

The measure theory of random fractals

Published online by Cambridge University Press:  24 October 2008

S. James Taylor
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, U.S.A.

Extract

In 1951 A. S. Besicovitch, who was my research supervisor, suggested that I look at the problem of determining the dimension of the range of a Brownian motion path. This problem had been communicated to him by C. Loewner, but it was a natural question which had already attracted the attention of Paul Lévy. It was a good problem to give to an ignorant Ph.D. student because it forced him to learn the potential theory of Frostman [33] and Riesz[75] as well as the Wiener [98] definition of mathematical Brownian motion. In fact the solution of that first problem in [81] used only ideas which were already twenty-five years old, though at the time they seemed both new and original to me. My purpose in this paper is to try to trace the development of these techniques as they have been exploited by many authors and used in diverse situations since 1953. As we do this in the limited space available it will be impossible to even outline all aspects of the development, so I make no apology for giving a biased account concentrating on those areas of most interest to me. At the same time I will make conjectures and suggest some problems which are natural and accessible in the hope of stimulating further research.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adler, R. J.. Hausdorff dimension and Gaussian fields. Ann. Probab. 5 (1977), 145151.CrossRefGoogle Scholar
[2]Adler, R. J.. The uniform dimension of the level sets of a Brownian sheet. Ann. Probab. 6 (1978), 509515.Google Scholar
[3]Adler, R. J.. The Geometry of Random Fields. (Wiley, 1981).Google Scholar
[4]Barlow, M. T., Perkins, E. A. and Taylor, S. J.. Two uniform intrinsic constructions for the local time of a class of Lévy processes. Illinois J. Math. 30 (1986), 1965.CrossRefGoogle Scholar
[5]Berman, S. M.. Gaussian sample functions: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972), 6386.CrossRefGoogle Scholar
[6]Besicovitch, A. S. and Taylor, S. J.. On the complementary intervals of a linear closed set of zero Lebesgue measure. J. London Math. Soc. 29 (1954), 449459.CrossRefGoogle Scholar
[7]Blumenthal, R. M. and Getoor, R. K.. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263273.CrossRefGoogle Scholar
[8]Blumenthal, R. M. and Getoor, R. K.. A dimension theorem for sample functions of stable processes. Illinois J. Math. 4 (1960), 370375.CrossRefGoogle Scholar
[9]Blumenthal, R. M. and Getoor, R. K.. The dimension of the set of zeros and the graph of a symmetric stable process. Illinois J. Math. 6 (1962), 308316.CrossRefGoogle Scholar
[10]Blumenthal, R. M. and Getoor, R. K.. Markov Processes and Potential Theory. (Academic Press, 1968).Google Scholar
[11]Boylan, E. S.. Local times for a class of Markov processes. Illinois J. Math. 8 (1964), 1939.Google Scholar
[12]Ciesielski, Z. and Taylor, S. J.. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 (1962), 434450.Google Scholar
[13]Cuzick, J.. Some local properties of Gaussian vector fields. Ann. Probab. 6 (1978), 984999.CrossRefGoogle Scholar
[14]Cuzick, J.. The Hausdorff dimension of the level sets of a Gaussian vector field. Z. Wahrscheinlichkeitstheorie 51 (1980), 287290.CrossRefGoogle Scholar
[15]Davies, P. L.. The exact Hausdorff measure of the zero set of certain stationary Gaussian processes. Ann. Probab. 5 (1977), 740755.Google Scholar
[16]Davis, B.. On Brownian slow points. Z. Wahrscheinlichkeitstheorie 64 (1983), 359367.CrossRefGoogle Scholar
[17]Davis, B.. On the paths of symmetric stable processes. Z. Wahrscheinlichkeitstheorie 64 (1983), 359367.Google Scholar
[18]Dvoretzky, A.. On the oscillation of the Brownian motion process. Israel J. Math. 1 (1963), 212214.Google Scholar
[19]Dvoretzky, A. and Erdös, P.. Some problems on random walk in space. Proc. Second Berkeley Symposium (1950), 353–367.Google Scholar
[20]Dvoretzky, A., Erdös, P. and Kakutani, S.. Double points of paths of Brownian motion in n-space. Acta Sci. Math. 12 (1950), 7581.Google Scholar
[21]Dvoretzky, A., Erdös, P. and Kakutani, S.. Multiple points of Brownian motion in the plane. Bull. Res. Council Israel F3 (1954), 364371.Google Scholar
[22]Dvoretzky, A., Erdös, P. and Kakutani, S.. Points of multiplicity c of plane Brownian paths. Bull. Res. Council Israel F7 (1958), 175180.Google Scholar
[23]Dvoretzky, A., Erdös, P., Kakutani, S. and Taylor, S. J.. Triple points of Brownian motion in 3-space. Proc. Cambridge Philos. Soc. 53 (1957), 856862.CrossRefGoogle Scholar
[24]Dynkin, E. B.Random fields associated with multiple points of Brownian motion. Jour. Functional Anal. 62 (1985), 397434.CrossRefGoogle Scholar
[25]Dynkin, E. B.. Regularised self-intersection local times of the planar Brownian motion. Preprint (1985).Google Scholar
[26]Ehm, W.. Sample function properties of the multi-parameter stable processes. Z. Wahrscheinlichkeitstheorie 56 (1981), 195228.Google Scholar
[27]Erdös, P. and Taylor, S. J.. On the Hausdorff measure of Brownian paths in the plane. Proc. Cambridge Philos. Soc. 57 (1961), 209222.CrossRefGoogle Scholar
[28]Evans, S. N.. On the Hausdorff dimension of Brownian cone points. Math. Proc. Cambridge Philos. Soc. 98 (1985), 343353.Google Scholar
[29]Falconer, K. J.. The Geometry of Fractal Sets. (Cambridge University Press, 1985).Google Scholar
[30]Fristedt, B. E.. An extension of a theorem of S. J. Taylor concerning multiple points of the symmetric stable process. Z. Wahrscheinlichkeitstheorie 9 (1967), 6264.Google Scholar
[31]Fristedt, B. E. and Pruitt, W. E.. Lower functions for increasing random walks and subordinators. Z. Wahrscheinlichkeitstheorie 18 (1971), 167182.CrossRefGoogle Scholar
[32]Fristedt, B. E. and Taylor, S. J.. Constructions of local time for a Markov process. Z. Wahrscheinlichkeitstheorie 22 (1983), 73112.CrossRefGoogle Scholar
[33]Frostman, O.. Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Medd Lund. Univ. Math. Seminar 3 (1935).Google Scholar
[34]Fukushima, M.. Basic properties of Brownian motion and a capacity on the Weiner space. J. Math. Soc. Japan 36 (1984), 161176.Google Scholar
[35]Geman, D. and Horowitz, J.. Occupation densities. Ann. Probab. 8 (1980), 167.CrossRefGoogle Scholar
[36]Greenwood, P. and Perkins, E. A.. A conditioned limit theorem for random walk and Brownian local time on square root boundaries. Ann. Probab. 11 (1983), 227261.CrossRefGoogle Scholar
[37]Hawkes, J.. On the Hausdorff dimension of the range of a stable process with a Borel set. Z. Wahrscheinlichkeitstheorie 19 (1971), 90102.Google Scholar
[38]Hawkes, J.. The measure of the range of a subordinator. Bull. London Math. Soc. 5 (1973), 2128.Google Scholar
[39]Hawkes, J.. Random recorderings of intervals complementary to a linear set. Quart. J. Math. Oxford 35 (1984), 165172.Google Scholar
[40]Hawkes, J. and Pruitt, W. E.. Uniform dimension results for processes with independent increments. Z. Wahrscheinlichkeitstheorie 28, 277288.CrossRefGoogle Scholar
[41]Hendricks, W. J.. Hausdorff dimension in a process with stable components—an interesting counterexample. Ann. Math. Statis. 43 (1972), 690694.Google Scholar
[42]Hendricks, W. J.. Multiple points for a process in with stable components. Z. Wahrscheinlichkeitstheorie 28 (1974), 113128.Google Scholar
[43]Hendricks, W. J.. Multiple points for transient symmetric Lévy processes in . Z. Wahrscheinlichkeitstheorie 49 (1979), 1321.CrossRefGoogle Scholar
[44]Horowitz, J.. The Hausdorff dimension of the sample path of a subordinator. Israel J. Math. 6 (1968), 176182.Google Scholar
[45]Jain, N. and Pruitt, W. E.. The correct measure function for the graph of a transient stable process. Z. Wahrscheinlichkeitstheorie 9 (1968), 131138.CrossRefGoogle Scholar
[46]Kahane, J. P.. Some Random Series of Functions. (Heath, 1968).Google Scholar
[47]Kahane, J. P.. Sur l'irregularité locale du mouvement brownien. C. R. Acad. Sci. Paris 278 (1974), 331333.Google Scholar
[48]Kahane, J. P.. Points multiples des processes de LéVy symétriques restreints à un ensemble de valeurs du temps. Sém. Anal. Harm. Orsay 83–02 (1983), 74105.Google Scholar
[49]Kahane, J. P.. Sur les zéros et les instants de ralentissement du mouvement brownien. C. R. Acad. Sci. Paris 282 (1976), 431433.Google Scholar
[50]Kaufman, R.. Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris 268 (1969), 727728.Google Scholar
[51]Kaufman, R.. Fourier Analysis and the paths of Brownian motion. Bull. Soc. Math. France 103 (1975), 427432.Google Scholar
[52]Kendall, W. S.. Contours of Brownian processes with several dimensional time. Z. Wahrscheinlichkeitstheorie 52 (1980), 267276.CrossRefGoogle Scholar
[53]Kolmogorov, A. N.. On certain asymptotic characterisations of completely bounded metric spaces. Dokl. Akad. Nauk SSSR 108 (1956), 385388.Google Scholar
[54]Komatsu, T. and Takashima, K.. The Hausdorff dimension of quasi-all Brownian paths Osaka J. Math. 21 (1984), 613619.Google Scholar
[55]Kono, N.. The exact Hausdorff measure of irregularity points for a Brownian path. Z. Wahrscheinlichkeitstheorie 40 (1977), 257282.CrossRefGoogle Scholar
[56]LeGall, J. F.. Sur la saucisse de Weiner et les points multiples. Ann. Probab. (1986) (to appear).Google Scholar
[57]LeGall, J. F.. Le comportement du mouvement brownien entre deux instants ou il fasse par un point double. J. Funct. Anal (1986) (to appear).Google Scholar
[58]Lévy, P.. Proeessus Stochastiques et Mouvements Browniens. (Gauthier-Villars, 1948).Google Scholar
[59]Lévy, P.. La mésure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari 16 (1953), 137.Google Scholar
[60]Mandelbrot, B. B.. Fractals: Form, Chance and Dimension. (Freeman, 1977).Google Scholar
[61]Mandelbrot, B. B.. The Fractal Geometry of Nature. (Freeman, 1982).Google Scholar
[62]McKean, H. P.. Hausdorff-Besicovitch dimension of Brownian motion paths. Duke J. 22 (1955), 229234.Google Scholar
[63]McKean, H. P.. Sample functions of stable processes. Ann. Math. 61 (1955), 564579.Google Scholar
[64]Orey, S.. Gaussian sample functions and Hausdorff dimension of level crossings. Z. Wahrscheinlichkeitstheorie 15 (1970), 249256.Google Scholar
[65]Orey, S. and Taylor, S. J.. How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. 28 (1974), 174192.Google Scholar
[66]Perkins, E. A.. The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrscheinlichkeitstheorie 58 (1981), 373388.Google Scholar
[67]Perkins, E. A.. On the Hausdorff dimension of Brownian slow points. Z. Wahrscheinlichkeitstheorie 64 (1983), 369399.CrossRefGoogle Scholar
[68]Perkins, E. A. and Taylor, S. J.. Measuring close approaches on a Brownian path. (In preparation).Google Scholar
[69]Perkins, E. A. and Taylor, S. J.. Uniform measure results for the image of sets under Brownian motion. (In preparation).Google Scholar
[70]Pitt, L.. Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978), 309330.Google Scholar
[71]Pruitt, W. E.. The Hausdorff dimension of the range of a process with stationary independent movements. J. Math. Mechanics 19 (1969), 371378.Google Scholar
[72]Pruitt, W. E. and Taylor, S. J.. Sample path properties of processes with stable components. Z. Wahrscheinlichkeitstheorie 12 (1969), 267289.Google Scholar
[73]Pruitt, W. E. and Taylor, S. J.. Hausdorff measure properties of the asymmetric Cauchy processes. Ann. Probab. 5 (1977), 608615.Google Scholar
[74]Ray, D.. Sojourn times and the exact Hausdorff measure of the sample path for planar Brownian motion. Trans. Amer. Math. Soc. 106 (1963), 436444.Google Scholar
[75]Riesz, M.. Integrals de Riemann-Lionville et potentials. Acta. Sci. Math. (Szeged) 9 (1938), 142.Google Scholar
[76]Rogers, C. A. and Taylor, S. J.. Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961), 131.Google Scholar
[77]Rosen, J.. Self-intersections of random fields. Ann. Probab. 12 (1984), 108119.Google Scholar
[78]Rosen, J.. A renormalised local time for multiple intersections of planar Brownian motion. (Preprint, 1986).Google Scholar
[79]Shimura, M.. Excursions in a cone for two-dimensional Brownian motion. J. Math., Kyoto Univ. (to appear).Google Scholar
[80]Stone, C. J.. The set of zeros of a semi-stable process. Illinois J. Math. 7 (1963), 631637.Google Scholar
[81]Taylor, S. J.. The Hausdorff α-dimensional measure of Brownian paths in n-space. Proc. Cambridge Philos. Soc. 49 (1953), 3139.CrossRefGoogle Scholar
[82]Taylor, S. J.. The α-dimensional measure of the graph and set of zeros of a Brownian path. Proc. Cambridge Philos. Soc. 51 (1955), 265274.Google Scholar
[83]Taylor, S. J.. On the connection between generalized capacities and Hausdorff measures. Proc. Cambridge Philos. Soc. 57 (1961), 524531.Google Scholar
[84]Taylor, S. J.. The exact Hausdorff measure of the sample path for planar Brownian motion. Proc. Cambridge Philos. Soc. 60 (1964), 253258.CrossRefGoogle Scholar
[85]Taylor, S. J.. Multiple points for the sample paths of the symmetric stable process. Z. Wahrscheinlichkeitstheorie 5 (1966), 247264.Google Scholar
[86]Taylor, S. J.. Sample path properties of a transient stable process. J. Math. Mechanics 16 (1967), 12291246.Google Scholar
[87]Taylor, S. J.. Sample path properties of processes with stationary independent increments. Stochastic Analysis (Wiley, 1973), 387414.Google Scholar
[88]Taylor, S. J.. The use of packing measure in the analysis of random sets. Proceedings of the 15th Symposium on Stochastic Processes and Applications. (Springer Lecture Notes, 1986).Google Scholar
[89]Taylor, S. J. and Tricot, C.. Packing measure, and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679699.Google Scholar
[90]Taylor, S. J. and Watson, N. A.. A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Cambridge Philos. Soc. 97 (1985), 325344.CrossRefGoogle Scholar
[91]Taylor, S. J. and Wendel, J. G.. The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie 6 (1966), 170180.CrossRefGoogle Scholar
[92]Testard, F.. Points doubles du mouvement brownien dans 3. C. R. Acad. Sci. Paris 300 (1985), 189192.Google Scholar
[93]Tongring, N.. Ph.D. dissertation, Yale University, 1983.Google Scholar
[94]Tran, L. T.. The Hausdorff dimension of the range of the N-parameter Wiener process. Ann. Probab. 5 (1977), 235242.Google Scholar
[95]Tricot, C.. Douze definitions de la densité logarithmique. C. R. Acad. Sci. Paris 293 (1981), 549552.Google Scholar
[96]Tricot, C.. Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc. 91 (1982), 5774.CrossRefGoogle Scholar
[97]Trotter, H. F.. A property of Brownian motion paths. Illinois J. Math. 2 (1958), 425433.Google Scholar
[98]Wiener, N.. Differential space. J. Math. Phys. 2 (1923), 131174.Google Scholar
[99]Wolpert, R. L.. Wiener path intersections and local time. J. Functional Anal. 30 (1978), 329340.Google Scholar
[100]Yoder, L.. The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 (1975), 169171.Google Scholar