Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T18:22:36.285Z Has data issue: false hasContentIssue false

Mean values and classes of harmonic functions

Published online by Cambridge University Press:  24 October 2008

Thomas Ramsey
Affiliation:
Department of Mathematics, University of Hawaii at Manoa
Yitzhak Weit
Affiliation:
Department of Mathematics, University of Hawaii at Manoa

Extract

Let μ be a finite complex Borel measure supported on the unit circle

.

In this paper, we are concerned with the characterization of the sets of functions satisfying the generalized mean value equation of the form

.

and for all ξ ∈ , | ξ | = R for some fixed R > 0.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brown, L., Schreiber, B. M. and Taylor, B. A.. Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier (Grenoble) 23 (1973), 125154.CrossRefGoogle Scholar
[2]Choquet, G. and Deny, J.. Sur l’équation de convolution μ = μ* σ; C. R. Acad. Sci. 250 (1960), 799801.Google Scholar
[3]Delsarte, L.. Note sur une propriété nouvelle des fonctions harmoniques. C. R. Acad. Sci. Paris 246 (1958), 13581360.Google Scholar
[4]Rubenstein, Z.. Characteristic functional equations of polynomials and the Morera- Carleman Theorem. Aequationes Math. 23 (1981), 108117.CrossRefGoogle Scholar
[5]Schwartz, L.. Théorie générale des functions moyenne-périodiques. Ann. of Math. 48 (1947), 857928.CrossRefGoogle Scholar
[6]Watson, G. N.. A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1962).Google Scholar
[7]Weit, Y.. A characterization of polynomials by convolution equations. J. London Math. Soc. (2) 23 (1981), 455459.CrossRefGoogle Scholar
[8]Weit, Y.. On invariant subspaces of continuous vector valued functions. J. Analyse Math. 41 (1982), 259271.Google Scholar
[9]Zalcman, L.. Analyticity and the Pompeiu problem. Arch. Rational Mech. Anal. 47 (1972), 237254.CrossRefGoogle Scholar
[10]Zalcman, L.. Mean values and differential equations. Israel J. Math. 14 (1973), 339352.CrossRefGoogle Scholar
[11]Zalcman, L.. Real proofs of complex theorems (and vice-versa). The Chauvenet Papers, vol. II, Abbott, J. C. (ed.) (Mathematical Association of America, 1978), 573595.Google Scholar