Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T02:45:00.619Z Has data issue: false hasContentIssue false

Mackey duals and almost shrinking bases

Published online by Cambridge University Press:  24 October 2008

N. J. Kalton
Affiliation:
University College, Swansea

Extract

Suppose (en) is a basis of a Banach space E, and that (en) is the dual sequence in E′. Then if (en) is a basis of E′ in the norm topology (i.e. (en) is shrinking) it follows that E′ is norm separable: it is easy to give examples of spaces E for which this is not so. Therefore there are plenty of spaces which cannot have a shrinking basis. This leads one to consider whether it might not be reasonable to replace the norm topology on E′ by one which is always separable (provided E is separable). Of course, the weak*-topology σ(E′, E) is one possibility (Köthe (17), p. 259); then it is trivial that (en) is a weak*-basis of E′. However, if the weak*-topology is separable, then so is the Mackey topology τ(E′, E) on E′, and so we may ask whether (en) is a basis of (E′,τ(E′, E)).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bennett, G. and Karton, N. J.FK-spaces containing c 0. Duke Math. J. 39 (1972), 561582.Google Scholar
(2)Cook, T. A.Weakly equicontinuous Schauder bases. Proc. Amer. Math. Soc. 23 (1969), 536537.CrossRefGoogle Scholar
(3)Dubinsky, E. and Retherford, J.R. Schauder bases in compatible topologies Studia Math. 28 (1967), 221226.CrossRefGoogle Scholar
(4)Eberlein, W. F.Weak compactness in Banach spaces. I. Proc. Nat. A. Sci. U.S.A. 33 (1947), 5153.CrossRefGoogle ScholarPubMed
(5)Edwards, R. E.Functional analysis (New York, 1965).Google Scholar
(6)Garling, D. J. H.The β- and γ-duality of sequence space. Proc. Cambridge Philos. Soc. 63 (1967), 963981.CrossRefGoogle Scholar
(7)Grothendieck, A.Sur la complétion du dual d'un espace vectoriel localement convexe. C.R. Acad. Sci. Paris 230 (1950), 605606.Google Scholar
(8)Grothendieck, A.Sur les applications linéares faiblement compactes d'espaces du type C(K). Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
(9)Grothendieck, A.Espaces vectoriels topologiques (Sao Paulo, 1964).Google Scholar
(10)James, R. C.Bases and reflexivity of Banach spaces. Ann. of Math. (2) 52 (1950), 518527.CrossRefGoogle Scholar
(11)Katton, N. J.Schauder decompositions and completeness. Bull. London Math. Soc. 2 (1970), 3436.Google Scholar
(12)Kalton, N. J.A barrelled space without a basis. Proc. Amer. Math. Soc. 26 (1970), 465466.CrossRefGoogle Scholar
(13)Kalton, N. J.Schauder decompositions in locally convex spaces. Proc. Cambridge Philos. Soc. 68 (1970), 377392.CrossRefGoogle Scholar
(14)Kalton, N. J.Normalization properties of Schauder bases. Proc. London Math. Soc. (3), 22 (1971), 91105.CrossRefGoogle Scholar
(15)Kalton, N. J.Bases in weakly sequentially complete Banach spaces. Studia Math. 42 (1972), 121131.CrossRefGoogle Scholar
(16)Köthe, G.Neubegründung der Theorie der vollkommenen Raume. Math. Nachr. 4 (1951), 7080.CrossRefGoogle Scholar
(17)Köthe, G.Topological vector spaces (Berlin, 1969).Google Scholar
(18)Mcarthur, C. W.On a theorem of Orlicz and Pettis. Pacific J. Math. 22 (1967), 297302.CrossRefGoogle Scholar
(19)McArthur, C. W. and Retiierford, J. R.Uniform and equicontinuous Schauder bases of subspaces. Canad. J. Math. 17 (1965), 207212.CrossRefGoogle Scholar
(20)Schauder, J.Zur Theorie stetige Abbildungen in Funktionalräumen. Math. Z. 26 (1927), 4765.CrossRefGoogle Scholar
(21)Singer, I.Weak*-bases in conjugate Banach spaces. Studia Math. 21 (1961), 7581.CrossRefGoogle Scholar
(22)Singer, I.On the basis problem in linear topological spaces. Rev. Math. Pures Appl. 10 (1965), 453457.Google Scholar
(23)Singer, I.Bases in Banach spaces (Berlin, 1970).CrossRefGoogle Scholar
(24)Webb, J. H.Sequential convergence in locally convex spaces. Proc. Cambridge Philos. Soc. 64 (1968), 341364.CrossRefGoogle Scholar
(25)Zippin, M.A remark on bases and reflexivity in Banach spaces. Israel J. Math. 6 (1968), 7479.CrossRefGoogle Scholar