Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T01:10:37.448Z Has data issue: false hasContentIssue false

The linear theory of an elastic Cosserat plate

Published online by Cambridge University Press:  24 October 2008

A. E. Green
Affiliation:
University of Newcastle upon Tyne and University of California, Berkeley
P. M. Naghdi
Affiliation:
University of Newcastle upon Tyne and University of California, Berkeley

Abstract

Some features of the linear theory of an elastic Cosserat plate are discussed and special attention is given to a bending theory which corresponds to the bending of a transversely isotropic three-dimensional plate. A useful representation for the solution of the system of differential equations characterizing the bending of an elastic Cosserat plate is deduced and the results are applied to the problem of an infinite Cosserat plate with a circular hole, the plate being in a state of uniform bending at infinity.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Friedrich, K. O. and Dressler, F. R.Comm. Pure Appl. Math. 14 (1961), 1.CrossRefGoogle Scholar
(2)Gol'denveizer, A. L.Appl. Math. Mech. (Trans of Prikl. Mat. Mekh.) 26 (1962), 1000.Google Scholar
(3)Gol'denveizer, A. L. and Kolos, A. V.Appl. Math. Mech. (Trans. of Prikl. Mat. Mekh) 29 (1965), 151.CrossRefGoogle Scholar
(4)Goodier, J. N.Philos. Mag. (ser 7) 22 (1936), 69.CrossRefGoogle Scholar
(5)Goodier, J. N.Trans. Roy. Soc. Canada (3d Ser.) 32 (1938), 65.Google Scholar
(6)Green, A. E.Quart. Appl. Math. 7 (1949 a), 223.CrossRefGoogle Scholar
(7)Green, A. E.Proc. Roy. Soc. Ser. A 195 (1949 b), 533.Google Scholar
(8)Green, A. E., Naghdi, P. M. and Wainwright, W.Arch. Rational Mech. Anal. 20 (1965), 287.CrossRefGoogle Scholar
(9)Green, A. E. and Zerna, W.Theoretical elasticity (Oxford, Clarendon Press, 1954).Google Scholar
(10)Laws, N.Proc. Cambridge Philos. Soc. 62 (1966), 313.CrossRefGoogle Scholar
(11)Reiss, E. L. and Locke, S.Quart. Appl. Math. 19 (1961), 195.CrossRefGoogle Scholar
(12)Reissner, E.J. Appl. Mech. 12, (1945), A69.Google Scholar
(13)Reissner, E.J. Math. and Phys. 29 (1950), 90.CrossRefGoogle Scholar
(14)Tiffen, R. and Lowe, P. G.Proc. London Math. Soc. (3) 13 (1963), 653.CrossRefGoogle Scholar
(15)Timoshenko, S. and Goodier, J. N.Theory of elasticity (2nd ed.) (McGraw-Hill Book Co., 1951).Google Scholar