Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T01:15:53.297Z Has data issue: false hasContentIssue false

Limit Theorems for Empirical Density of Greatest Common Divisors

Published online by Cambridge University Press:  23 May 2016

BEHZAD MEHRDAD
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY-10012, U.S.A. e-mail: [email protected], [email protected]
LINGJIONG ZHU
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY-10012, U.S.A. e-mail: [email protected], [email protected]

Abstract

The law of large numbers for the empirical density for the pairs of uniformly distributed integers with a given greatest common divisor is a classic result in number theory. We study the large deviations of the empirical density. We will also obtain a rate of convergence to the normal distribution for the central limit theorem. Some generalisations are provided.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cesàro, E. Démonstration élémentaire et généralisation de quelques thérèmes de M. Berger. Mathesis. 1 (1881), 99102.Google Scholar
[2] Cesàro, E. Étude moyenne du plus grand commun diviseur de deux nombres. Ann. Mate. Pura Appl. 13 (1885), 235250.CrossRefGoogle Scholar
[3] Cesàro, E. Sur le plus grand commun diviseur de plusieurs nombres. Ann. Mate Pura Appl. 13 (1885), 291294.Google Scholar
[4] Cohen, E. Arithmetical functions of a greatest common divisor. I. Proc. Amer. Math. Soc. 11 (1960), 164171.Google Scholar
[5] Dembo, A. and Zeitouni, O. Large Deviations Techniques and Applications, 2nd Edition (Springer, New York, 1998).Google Scholar
[6] Diaconis, P. and Erdős, P. On the distribution of the greatest common divisor. Technical Report No. 12 (Stanford University, 1977). Reprinted in A Festschrift for Herman Rubin, 5661. Lecture Notes, Monograph Series, Vol. 45 (Institute of Mathematical Statistics, 2004).CrossRefGoogle Scholar
[7] Elliott, P. D. T. A.. Probabilistic Number Theory, Volume I and II (Springer-Verlag, New York, 1980).Google Scholar
[8] Fernández, J. L. and Fernández, P. Asymptotic normality and greatest common divisors. Internat. J. Number Theory. 11 (2015), 89.Google Scholar
[9] Fernández, J. L. and Fernández, P. On the probability distribution of gcd and lcm of r-tuples of integers (2013). arXiv:1305.0536.Google Scholar
[10] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 6th Edition (Oxford University Press, 2008).Google Scholar
[11] Ross, N. Fundamentals of Stein's method. Probability Surveys. 8 (2011), 210293.Google Scholar
[12] Tenenbaum, G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics, (Cambridge University Press, 1995).Google Scholar
[13] Varadhan, S. R. S. Large Deviations and Applications (SIAM, Philadelphia, 1984).Google Scholar