Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T21:26:06.389Z Has data issue: false hasContentIssue false

Julia sets of uniformly quasiregular mappings are uniformly perfect

Published online by Cambridge University Press:  18 July 2011

ALASTAIR N. FLETCHER
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL. e-mail: [email protected]
DANIEL A. NICKS
Affiliation:
Department of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA. e-mail: [email protected]

Abstract

It is well known that the Julia set J(f) of a rational map f: is uniformly perfect; that is, every ring domain which separates J(f) has bounded modulus, with the bound depending only on f. In this paper we prove that an analogous result is true in higher dimensions; namely, that the Julia set J(f) of a uniformly quasiregular mapping f: nn is uniformly perfect. In particular, this implies that the Julia set of a uniformly quasiregular mapping has positive Hausdorff dimension.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, I. N., Multiply connected domains of normality in iteration theory. Math. Z. 81 (1963), 206214.CrossRefGoogle Scholar
[2]Beardon, A. F. and Pommerenke, Ch.The Poincaré metric of plane domains. J. London Math. Soc. (2) 18 (1978), 475483.CrossRefGoogle Scholar
[3]Bergweiler, W.Iteration of quasiregular mappings. Comput. Methods Funct. Theory. 10 (2010), 455481.CrossRefGoogle Scholar
[4]Bergweiler, W., Fletcher, A., Langley, J. K. and Meyer, J.The escaping set of a quasiregular mapping, Proc. Amer. Math. Soc. 137, no. 2 (2009), 641651.CrossRefGoogle Scholar
[5]Bergweiler, W. and Zheng, J. H. On the uniform perfectness of the boundary of multiply connected wandering domains, arxiv preprint http://arxiv.org/abs/1011.5318.Google Scholar
[6]Carleson, L. and Gamelin, T.Complex Dynamics (Springer-Verlag, 1993).CrossRefGoogle Scholar
[7]Eremenko, A. Julia sets are uniformly perfect, Preprint (1992).Google Scholar
[8]Fletcher, A. and Nicks, D. A.Quasiregular dynamics on the n-sphere. Ergodic Theory and Dynam. Syst. 31 (2011), 2331.CrossRefGoogle Scholar
[9]Hinkkanen, A.Julia sets of rational functions are uniformly perfect. Math. Proc. Camb. Phil. Soc. 113 (1993), 543559.CrossRefGoogle Scholar
[10]Hinkkanen, A., Martin, G. and Mayer, V.Local dynamics of uniformly quasiregular mappings. Math. Scand. 95, no. 1 (2004), 80100.CrossRefGoogle Scholar
[11]Iwaniec, T. and Martin, G.Quasiregular semigroups. Ann. Acad. Sci. Fenn. 21, no. 2 (1996), 241254.Google Scholar
[12]Järvi, P. and Vuorinen, M.Uniformly perfect sets and quasiregular mappings. J. London Math. Soc., II. Ser. 54, No. 3 (1996), 515529.CrossRefGoogle Scholar
[13]Mane, R. and Da Rocha, L.Julia sets are uniformly perfect. Proc. Amer. Math. Soc. 116 (1992), 251257.CrossRefGoogle Scholar
[14]Mayer, V.Uniformly quasiregular mappings of Lattès type. Conform. Geom. Dyn. 1 (1997), 104111.CrossRefGoogle Scholar
[15]Mayer, V.Quasiregular analogues of critically finite rational functions with parabolic orbifold. J. Anal. Math. 75 (1998), 105119.CrossRefGoogle Scholar
[16]Miniowitz, R.Normal families of quasimeromorphic mappings. Proc. Amer Math. Soc. 84 (1982), 3543.CrossRefGoogle Scholar
[17]Pommerenke, Ch.Uniformly Perfect Sets and the Poincaré Metric. Arch. Math. 32 (1979), 192199.CrossRefGoogle Scholar
[18]Rickman, S.Quasiregular mappings. (Springer-Verlag 1993).CrossRefGoogle Scholar
[19]Siebert, H.Fixpunkte und normale Familien quasiregulärer Abbildungen. Dissertation (CAU Kiel, 2004).Google Scholar
[20]Sugawa, T.An explicit bound for uniform perfectness of the Julia sets of rational maps. Math. Z. 238, No. 2 (2001), 317333.CrossRefGoogle Scholar
[21]Sugawa, T.Uniformly perfect sets: analytic and geometric aspects. Sugaku Expositions 16, no. 2 (2003), 225242.Google Scholar
[22]Tukia, P. and Väisälä, J.Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5, no. 1 (1980), 97114.CrossRefGoogle Scholar
[23]Vuorinen, M.Conformal Geometry and Quasiregular Mappings. (Springer-Verlag, 1988).CrossRefGoogle Scholar
[24]Zheng, J. H.On uniformly perfect boundary of stable domains in iteration of meromorphic functions II. Math. Proc. Camb. Phil. Soc. 132, no. 3 (2002), 531544.Google Scholar