Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T22:19:37.875Z Has data issue: false hasContentIssue false

Involutory *-antiautomorphisms in Toeplitz algebras

Published online by Cambridge University Press:  24 October 2008

P. J. Stacey
Affiliation:
Department of Mathematics, La Trobe University, Victoria 3083, Australia

Extract

Let H be a separable complex Hilbert space with orthonormal basis {ei: i ∈ ℕ}, let s be the unilateral shift defined by sei = ei+1 for each i and let K be the algebra of compact operators on H. The present paper classifies the involutory *-anti-automorphisms in the C*-algebra C*(sn, K) generated by K and a positive integral power sn of s. It is shown that, up to conjugacy by *-automorphisms, there are two such involutory *-antiautomorphisms when n is even and one when n is odd.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Arveson, W.. Notes on extensions of C*-algebras. Duke Math. J. 44 (1977), 329355.CrossRefGoogle Scholar
[2]Berg, I. D.. An extension of the Weyl-von Neumann Theorem to normal operators. Trans. Amer. Math. Soc. 160 (1971), 365371.CrossRefGoogle Scholar
[3]Blackadar, B.. K-theory for Operator Algebras. Mathematical Sciences Research Institute Publications no. 5 (Springer-Verlag, 1986).CrossRefGoogle Scholar
[4]Brown, L. G., Douglas, R. G. and Fillmore, P. A.. Unitary equivalence modulo the compact operators and extensions of C*-algebras. In Proc. Conference on Operator Theory, Lecture Notes is Math. vol. 345 (Springer-Verlag, 1973), pp. 58128.CrossRefGoogle Scholar
[5]Coburn, L. A.. The C*-algebra generated by an isometry II. Trans. Amer. Math. Soc. 137 (1969), 211217.Google Scholar
[6]Cuntz, J.. K-theory and C*-algebras. In Proc. Conference on K-Theory, Lecture Notes in Math. vol. 1046 (Springer-Verlag, 1984), pp. 5579.Google Scholar
[7]Dixmier, J.. Les C*-algèbres et leurs Reprèsentations (Gauthier-Villars, 1969).Google Scholar
[8]Douglas, R. G.. Banach Algebra Techniques in Operator Theory (Academic Press, 1972).Google Scholar
[9]Halmos, P. R.. A Hilbert Space Problem Book (Springer-Verlag, 1974).CrossRefGoogle Scholar
[10]Hanche-Olsen, H. and Størmer, E.. Jordan Operator Algebras (Pitman, 1984).Google Scholar
[11]Herman, M.. Sur la conjugaison différentiable des diffeomorphismes du cercle a des rotations. Inst. Hautes Études Sci. Publ. Math. 49 (1979).CrossRefGoogle Scholar
[12]Kasparov, G. G.. Hilbert C*-modules: theorems of Stinespring and Voiculescu. J. Operator Theory 4 (1980), 133150.Google Scholar
[13]Kasparov, G. G.. The operator K-functor and extensions of C*-algebras. Math. USSR-Izv. 16 (1981), 513572.CrossRefGoogle Scholar
[14]Pedersen, G. K.. C*-algebras and their Automorphism Groups (Academic Press, 1979).Google Scholar
[15]Stacey, P. J.. Real structure in direct limits of finite dimensional C*-algebras. J. London Math. Soc. (2) 35 (1987), 339352.CrossRefGoogle Scholar
[16]Voiculescu, D.. A non-commutative Weyl-von Neumann theorem. Rev. Roumaine Math. Pures Appl. 21 (1976), 97113.Google Scholar
[17]von Neumann, J.. Charakterisierung des Spektrums eines Integraloperators. Actualités Sci. Indust. 229 (Hermann, 1935).Google Scholar