Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Csáki, E.
Földes, A.
and
Révész, P.
1993.
On almost sure local and global central limit theorems.
Probability Theory and Related Fields,
Vol. 97,
Issue. 3,
p.
321.
Hurelbaatar, G.
1995.
A strong approximation for logarithmic averages of partial sums of random variables.
Periodica Mathematica Hungarica,
Vol. 31,
Issue. 3,
p.
189.
Horvath, Lajos
and
Khoshnevisan, Davar
1995.
Weight functions and pathwise local central limit theorems.
Stochastic Processes and their Applications,
Vol. 59,
Issue. 1,
p.
105.
Berkes, István
Horváth, Lajos
and
Khoshnevisan, Davar
1998.
Logarithmic averages of stable random variables are asymptotically normal.
Stochastic Processes and their Applications,
Vol. 77,
Issue. 1,
p.
35.
Berkes, István
and
Horváth, Lajos
1998.
Limit Theorems for Logarithmic Averages of Random Vectors.
Mathematische Nachrichten,
Vol. 195,
Issue. 1,
p.
5.
Csáki, E.
and
Földes, A.
1998.
Asymptotic Methods in Probability and Statistics.
p.
97.
Fahrner, I.
and
Stadtmüller, U.
1998.
On almost sure max-limit theorems.
Statistics & Probability Letters,
Vol. 37,
Issue. 3,
p.
229.
Berkes, I.
1998.
Asymptotic Methods in Probability and Statistics.
p.
59.
Vronskii, M. A.
2000.
Refinement of the almost sure central limit theorem for associated processes.
Mathematical Notes,
Vol. 68,
Issue. 4,
p.
444.
Вронский, М А
and
Vronskii, M A
2000.
Уточнение сильной версии центральной предельной теоремы для ассоциированных процессов.
Математические заметки,
Vol. 68,
Issue. 4,
p.
513.
Chaabane, Faouzi
and
Maaouia, Faïza
2000.
Théorèmes limites avec poids pour les martingales vectorielles.
ESAIM: Probability and Statistics,
Vol. 4,
Issue. ,
p.
137.
Chaabane, F.
2001.
INVARIANCE PRINCIPLES WITH LOGARITHMIC AVERAGING FOR MARTINGALES.
Studia Scientiarum Mathematicarum Hungarica,
Vol. 37,
Issue. 1-2,
p.
21.
Berkes, István
and
Horváth, Lajos
2001.
The logarithmic average of sample extremes is asymptotically normal.
Stochastic Processes and their Applications,
Vol. 91,
Issue. 1,
p.
77.
Berkes, I.
Horváth, L.
and
Chen, X.
2001.
Central limit theorems for logarithmic averages.
Studia Scientiarum Mathematicarum Hungarica,
Vol. 38,
Issue. 1-4,
p.
79.
Berkes, István
2001.
The law of large numbers with exceptional sets.
Statistics & Probability Letters,
Vol. 55,
Issue. 4,
p.
431.
Berkes, István
and
Csáki, Endre
2001.
A universal result in almost sure central limit theory.
Stochastic Processes and their Applications,
Vol. 94,
Issue. 1,
p.
105.
Heck, Matthias
and
Maaouia, Faïza
2001.
The Principle of Large Deviations for Martingale Additive Functionals of Recurrent Markov Processes.
Electronic Journal of Probability,
Vol. 6,
Issue. none,
Wang, Fang
and
Cheng, Shi Hong
2004.
Almost Sure Central Limit Theorems for Heavily Trimmed Sums.
Acta Mathematica Sinica, English Series,
Vol. 20,
Issue. 5,
p.
869.
Hörmann, Siegfried
2006.
An extension of almost sure central limit theory.
Statistics & Probability Letters,
Vol. 76,
Issue. 2,
p.
191.
Rychlik, Zdzisław
and
Szuster, Konrad S.
2012.
On the random functional central limit theorems with almost sure convergence for subsequences.
Demonstratio Mathematica,
Vol. 45,
Issue. 2,
p.
283.