Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T12:48:47.205Z Has data issue: false hasContentIssue false

The injective tensor product of ℒp-algebras

Published online by Cambridge University Press:  24 October 2008

T. K. Carne
Affiliation:
Trinity College, Cambridge
A. M. Tonge
Affiliation:
St John's College, Cambridge

Extract

When A1 and A2 are Banach algebras, their algebraic tensor product A1A2 has a natural multiplication. In this paper we investigate when the condition that A1 and A2 are ℒp-spaces constrains this multiplication to extend to the injective tensor product A1A2, making it a Banach algebra.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Carne, T. K.Banach algebras and tensor products. J. London Math. Soc. 17 (1978).Google Scholar
(2)Grothendieck, A.Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8 (1956), 179.Google Scholar
(3)Hardy, G. H. and Littlewood, J. E.Bilinear forms bounded in space [p, q]. Quarterly J. Math. 5 (1934), 241254.CrossRefGoogle Scholar
(4)Krivine, J.-L.Sur la constante de Grothendieck. C.R. Acad. Sci., Paris 284 (1977), 445446.Google Scholar
(5)Lindenstrauss, J. and Peeczyński, A.Absolutely summing operators in ℒp-spaces and their applications. Studia Math. 29 (1968), 275326.CrossRefGoogle Scholar
(6)Lindenstrauss, J. and Tzafriri, L.Classical Banach Spaces. Springer Lecture Notes in Mathematics, no. 338 (Berlin, 1973).Google Scholar
(7)Mantero, A. M. and Tonge, A. M. Some remarks on the injective tensor product and Banach algebras. Bol. Un. Mat. Ital. (in the Press).Google Scholar
(8)Milne, H. K.The injective tensor product of Banach algebras which are ℒ1-spaces. Bull. London Math. Soc. 8 (1976), 261262.CrossRefGoogle Scholar
(9)Pietsch, A.Absolutely p-summing operators in ℒr-spaces. Bull. Soc. Math. France(Mémoire) 31–32 (1972), 285315.Google Scholar
(10)Rosenthal, H. P.On subspaces of Lp. Annals of Math. 97 (1973), 344373.CrossRefGoogle Scholar
(11)Saphar, P.Produits tensoriels d' espaces de Banach et classes d' applications linéaires. Studia Math. 38 (1970), 71100.CrossRefGoogle Scholar
(12)Varopoulos, N. Th.Sur les produits tensoriels des algèbres normées. C. R. Acad. Sci., Paris 276 (1974), 11931195.Google Scholar