Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T14:05:57.076Z Has data issue: false hasContentIssue false

Hilbert's function in a semi-lattice

Published online by Cambridge University Press:  24 October 2008

A. Learner
Affiliation:
Trinity CollegeCambridge

Extract

Samuel (1) introduced a generalized Hilbert function, written Xq(r, a) and defined for arbitrary ideals a in a local ring Q with maximal ideai m. where q is m-primary.

Northcott(2) proved that for a homogeneous ideal ã in a polynomial ring A[X1, …, Xn], where A = Q/q, this is equal to the ordinary Hilbert function χ(r, ã).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Samuel, P.La notion de multiplicité en algèbre et en géométrie algébrique. J. Math. pures appl. 30 (1951), 159275.Google Scholar
(2)Northcott, D. G.Hilbert's function in a local ring. Quart. J. Math. (2), 4 (1953), 6780.CrossRefGoogle Scholar
(3)Sperner, E.Über einen kombinatorischen Satz von Macauley. Abh. math. Sem. hamburg Univ. 7 (1930), 149–63.CrossRefGoogle Scholar
(4)van der Waerden, B. L.On Hilbert's function, and series of compoaition of ideals. Proc. Kon. Acad. Amsterdam 31 (1928), 749–70.Google Scholar