Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T13:57:42.102Z Has data issue: false hasContentIssue false

The growth of the expected number of real zeros of a random polynomial with dependent coefficients

Published online by Cambridge University Press:  24 October 2008

Richard Glendinning
Affiliation:
School of Mathematical Sciences, University of Bath, Bath BA2 7AY

Abstract

We determine the rate of growth of the expected number of real zeros of a class of random polynomials whose coefficients form a stationary uniformly mixing sequence.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adler, R. J.. The Geometry of Random Fields (John Wiley & Sons, 1981).Google Scholar
[2]Bharucha-Reid, A. T. and Sambandham, M.. Random Polynomials (Academic Press, 1986).Google Scholar
[3]Christensen, M. J. and Sambandham, M.. An improved lower bound for the expected number of real zeros of a random polynomial. Stochastic Anal. Appl. 2 (1984), 431436.CrossRefGoogle Scholar
[4]Dunnage, J. E. A.. The number of real zeros of a random trigonometric polynomial. Proc. London Math. Soc. 16 (1966), 5384.CrossRefGoogle Scholar
[5]Erdös, P. and Offord, A. C.. On the number of real roots of a random algebraic equation. Proc. London Math. Soc. 6 (1956), 139160.CrossRefGoogle Scholar
[6]Farahmand, K.. On the average number of real roots of a random algebraic equation. Ann. Probab. 14 (1986), 702709.CrossRefGoogle Scholar
[7]Glendinning, R. H.. Random Polynomials. Ph.D thesis, London University (1986).Google Scholar
[8]Glendinning, R. H.. The growth of the expected number of real zeros of a random polynomial. J. Austral. Math. Soc. Ser. A (to appear).Google Scholar
[9]Glendinning, R. H.. The rate of convergence in the central limit theorem for non-stationary dependent random vectors. J. Multivariate Anal. (to appear).Google Scholar
[10]Holgate, P.. Studies in the history of probability and statistics XLI. Waring and Sylvester on random algebraic equations. Biometrika 73 (1986), 228231.CrossRefGoogle Scholar
[11]Ibragimov, I. A. and Linnik, Yu. V.. Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, 1971).Google Scholar
[12]Ibragimov, I. A. and Maslova, N. B.. On the expected number of real zeros of random polynomials (I). Coefficients with zero means. Theory Probab. Appl. 16 (1971), 228248.CrossRefGoogle Scholar
[13]Ibragimov, I. A. and Maslova, N. B.. On the expected number of real zeros of random polynomials (II). Coefficients with non-zero means. Theory Probab. Appl. 17 (1971), 485493.CrossRefGoogle Scholar
[14]Ibragimov, I. A. and Maslova, N. B.. Average number of real roots of random polynomials. Soviet Math. Dokl. 12 (1971), 10041008.Google Scholar
[15]Iosifescu, M.. La loi du logarithme itéré pour une classe de variables aléatoires dépendent. Theor. Verojanost. i. Premenen 13 (1968), 315325.Google Scholar
[16]Jamron, B. R.. The average number of real zeros of random polynomials. Soviet Math. Dokl. 13 (1972), 13811383.Google Scholar
[17]Kac, M.. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49 (1943), 314320.CrossRefGoogle Scholar
[18]Kac, M.. On the average number of real roots of a random algebraic equation (II). Proc. London Math. Soc. 50 (1948), 390408.CrossRefGoogle Scholar
[19]Littlewood, J. E. and Offord, A. C.. On the number of real roots of a random algebraic equation. J. London Math. Soc. 13 (1938), 288295.CrossRefGoogle Scholar
[20]Logan, B. F. and Shepp, L. A.. Real zeros of random polynomials. Proc. London Math. Soc. 18 (1968), 2939.CrossRefGoogle Scholar
[21]Logan, B. F. and Shepp, L. A.. Real zeros of random polynomials (II). Proc. London Math. Soc. 19 (1968), 308314.CrossRefGoogle Scholar
[22]Sambandham, M.. On the average number of real zeros of a class of random algebraic curves. Pacific J. Math. 81 (1979), 207215.CrossRefGoogle Scholar
[23]Shenker, M.. The mean number of real roots for one class of random polynomials. Ann. Probab. 8 (1981), 510512.Google Scholar
[24]Stevens, D. C.. The average number of real zeros of a random polynomial. Comm. Pure Appl. Math. 22 (1969), 457477.CrossRefGoogle Scholar
[25]Yoshihara, Ken-Ichi. Moment inequalities for mixing sequences. Kodai Math. J. 1 (1978), 316318.CrossRefGoogle Scholar