Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:00:50.848Z Has data issue: false hasContentIssue false

A Gram determinant for Lickorish's bilinear form

Published online by Cambridge University Press:  10 March 2011

XUANTING CAI*
Affiliation:
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana 70803, USA e-mail: [email protected]

Abstract

We use the Jones–Wenzl idempotents to construct a basis of the Temperley–Lieb algebra TLn. This allows a short calculation for a Gram determinant of Lickorish's bilinear form on the Temperley–Lieb algebra.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blanchet, C., Habegger, N., Masbaum, G. and Vogel, P.Topological quantum field theories derived from the Kauffman bracket. Topology 34 (1995), no. 4, 883927.CrossRefGoogle Scholar
[2]Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Revised and enlarged edition. (D. Reidel Publishing Co., 1974).Google Scholar
[3]Chen, Q. and Przytycki, J.The Gram determinant of the type B Temperley-Lieb algebra. Adv. in Appl. Math. 43 (2009), no. 2, 156161.CrossRefGoogle Scholar
[4]Di Francesco, P., Golinelli, O. and Guitter, E.Meanders and the Temperley-Lieb algebra. Comm. Math. Phys. 186 (1997), no. 1, 159.CrossRefGoogle Scholar
[5]Di Francesco, P.Meander determinants. Comm. Math. Phys. 191 (1998), no. 3, 543583.CrossRefGoogle Scholar
[6]Genauer, J. and Stoltzfus, N. W.Explicit diagonalization of the Markov form on the Temperley-Lieb algebra. Math. Proc. Camb. Phil. Soc. 142 (2007), no. 3, 469485.CrossRefGoogle Scholar
[7]Kauffman, L. H. and Lins, S. L.Temperley-Lieb recoupling theory and invariants of 3-manifolds. Ann. Math. Stud., 134. (Princeton University Press, NJ, 1994).Google Scholar
[8]Kirby, R.A calculus for framed links in S 3. Invent. Math. 45 (1978), no. 1, 3556.CrossRefGoogle Scholar
[9]Lickorish, W. B. R.Invariants for 3-manifolds from the combinatorics of the Jones polynomial. Pacific J. Math. 149 (1991), no. 2, 337347.CrossRefGoogle Scholar
[10]Lickorish, W. B. R. An introduction to knot theory. Graduate Texts in Mathematics, 175. (Springer-Verlag, 1997).CrossRefGoogle Scholar
[11]Lickorish, W. B. R.Skeins and handlebodies. Pacific J. Math. 159 (1993), no. 2, 337349.CrossRefGoogle Scholar
[12]Masbaum, G. and Vogel, P.3-valent graphs and the Kauffman bracket. Pacific J. Math. 164 (1994), no. 2, 361381.CrossRefGoogle Scholar
[13]Ko, K. H. and Smolinsky, L.A combinatorial matrix in 3-manifold theory. Pacific J. Math. 149 (1991), no. 2, 319336.CrossRefGoogle Scholar
[14]Reshetikhin, N. and Turaev, V. G.Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), no. 3, 547597.CrossRefGoogle Scholar
[15]Witten, E.Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121 (1989), no. 3, 351399.CrossRefGoogle Scholar