No CrossRef data available.
Published online by Cambridge University Press: 14 August 2017
We associate to a group G a series that generalises the cogrowth series of G and is related to a random walk on G. We show that the series is rational if and only if G is finite, generalizing a result of Kouksov [Kou]. We show that when G is finite, the series determines G. There are naturally occurring ideals and varieties that are acted on by Aut(G). We study these and generalize this to the context of S-rings over finite groups. There is an associated representation of Aut(G) and we characterize when this is irreducible.