No CrossRef data available.
Framed cobordisms in real algebraic geometry
Published online by Cambridge University Press: 24 October 2008
Extract
Akbulut and King [3, 4] have obtained several interesting results investigating the effects on homology of real algebraic varieties of the blowing-up construction. Here we apply this technique to study the behaviour of homotopy classes.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 101 , Issue 1 , January 1987 , pp. 57 - 60
- Copyright
- Copyright © Cambridge Philosophical Society 1987
References
REFERENCES
[1]Akbulut, S. and King., H.The topology of real algebraic sets with isolated singularities. Ann. of Math. 113 (1981), 425–446.CrossRefGoogle Scholar
[2]Akbulut, S. and King., H.The topology of real algebraic sets. Enseign. Math. 29 (1983), 221–261.Google Scholar
[3]Akbulut, S. and King., H.Submanifolds and homology of nonsingular real algebraic varieties. Am. J. Math. 107 (1985), 45–83.CrossRefGoogle Scholar
[4]Akbulut, S. and King., H.A resolution theorem for homology cycles of real algebraic varieties. Invent. Math. 79 (1985), 589–601.CrossRefGoogle Scholar
[5]Bochnak, J., Coste, M. and Roy., M. F.Géométrie Algébrique Réelle. Ergebnisse der Math. Springer (to appear).Google Scholar
[6]Bochnak, J. and Kucharz., W.Realization of homotopy classes by algebraic mappings. University of New Mexico, preprint (1985).Google Scholar
[7]Bochnak, J. and Kucharz., W.Algebraic approximation of mappings into spheres. Mich. Math. J., to appear.Google Scholar
[8]Hironaka., H.Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II. Ann. of Math. 79 (1964), 109–326.CrossRefGoogle Scholar
[9]Loday., J. L.Applications algébriques du tore dans la sphere et de Sp × Sp dans S p+q. Lecture Notes in Math. vol. 342 (Springer, 1973), 79–91.Google Scholar
[10]Lojasiewicz., S.Sur la problème de la division. Studia Math. 8 (1959), 87–136.CrossRefGoogle Scholar
[11]Milnor., J.Topology from the Differentiable Viewpoint (University of Virginia Press, 1966).Google Scholar
[12]Serre., J. P.Faisceaux algébriques cohérents. Ann. of Math. 61 (1956), 197–278.CrossRefGoogle Scholar
[13]Silhol., R.Géométrie algébrique sur un corps non algébriquement clos. Commun. Alg. 6 (1978), 1131–1155.CrossRefGoogle Scholar
[14]Wood., R.Polynomial maps from spheres to spheres. Invent. Math. 5 (1968), 163–168.CrossRefGoogle Scholar