Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Falconer, Kenneth J.
and
Mattila, Pertti
1996.
The packing dimension of projections and sections of measures.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 119,
Issue. 4,
p.
695.
Bishop, Christopher
and
Peres, Yuval
1996.
Packing dimension and Cartesian products.
Transactions of the American Mathematical Society,
Vol. 348,
Issue. 11,
p.
4433.
Falconer, K. J.
and
Howroyd, J. D.
1996.
Projection theorems for box and packing dimensions.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 119,
Issue. 2,
p.
287.
Xiao, Yimin
1996.
Packing dimension, Hausdorff dimension and Cartesian product sets.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 120,
Issue. 3,
p.
535.
Howroyd, J. D.
1996.
On Hausdorff and packing dimension of product spaces.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 119,
Issue. 4,
p.
715.
Olsen, L.
1996.
Multifractal dimensions of product measures.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 120,
Issue. 4,
p.
709.
Dihe, Hu
1997.
The convergence of statistically self-similar sets and the upper bound and lower bound of Hausdorff measure.
Wuhan University Journal of Natural Sciences,
Vol. 2,
Issue. 2,
p.
142.
Hunt, Brian R
and
Kaloshin, Vadim Yu
1997.
How projections affect the dimension spectrum of fractal measures.
Nonlinearity,
Vol. 10,
Issue. 5,
p.
1031.
Järvenpää, Maarit
and
Mattila, Pertti
1998.
Hausdorff and packing dimensions and sections of measures.
Mathematika,
Vol. 45,
Issue. 1,
p.
55.
Järvenpää, Esa
and
Järvenpää, Maarit
1999.
Linear mappings and generalized upper spectrum for dimensions.
Nonlinearity,
Vol. 12,
Issue. 3,
p.
475.
Falconer, K. J.
and
O'Neil, T. C.
1999.
Convolutions and the Geometry of Multifractal Measures.
Mathematische Nachrichten,
Vol. 204,
Issue. 1,
p.
61.
Xiong, Shuangping
and
Liu, Luqin
1999.
ON THE HITTING PROBABILITY AND POLARITY FOR A CLASS OF SELF-SIMILAR MARKOV PROCESSES.
Acta Mathematica Scientia,
Vol. 19,
Issue. 2,
p.
226.
Falconer, K. J.
and
O'Neil, T. C.
1999.
Convolutions and the Geometry of Multifractal Measures.
Mathematische Nachrichten,
Vol. 204,
Issue. 1,
p.
61.
Peres, Yuval
and
Schlag, Wilhelm
2000.
Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions.
Duke Mathematical Journal,
Vol. 102,
Issue. 2,
Yu, Jinghu
and
Fan, Wentao
2000.
FRACTAL PROPERTIES OF STATISTICALLY SELF-SIMILAR SETS.
Acta Mathematica Scientia,
Vol. 20,
Issue. 2,
p.
256.
Olsen, L.
2000.
Fractal Geometry and Stochastics II.
p.
3.
Barbaroux, Jean-Marie
Germinet, François
and
Tcheremchantsev, Serguei
2001.
Generalized fractal dimensions: equivalences and basic properties.
Journal de Mathématiques Pures et Appliquées,
Vol. 80,
Issue. 10,
p.
977.
Järvenpää, Esa
Järvenpää, Maarit
and
Llorente, Marta
2004.
Local dimensions of sliced measures and stability of packing dimensions of sections of sets.
Advances in Mathematics,
Vol. 183,
Issue. 1,
p.
127.
Järvenpää, Esa
Järvenpää, Maarit
and
Leikas, Mika
2005.
(Non)regularity of Projections of Measures Invariant Under Geodesic Flow.
Communications in Mathematical Physics,
Vol. 254,
Issue. 3,
p.
695.
Järvenpää, E
2005.
Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems.
Vol. 671,
Issue. ,
p.
95.