Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T00:54:08.139Z Has data issue: false hasContentIssue false

Formations and a class of locally soluble groups

Published online by Cambridge University Press:  24 October 2008

S. E. Stonehewer
Affiliation:
Department of Mathematics, University of Newcastle-upon-Tyne

Extract

In (3) W. Gaschütz introduced the concept of a formation of finite soluble groups, generalizing the results of R. W. Carter on the existence and conjugacy of nilpotent self-normalizing subgroups in finite soluble groups (2). Carter's results have already been extended to two classes of infinite groups in (9), (10), and the object of the present work is to extend the results of Gaschütz to a class of infinite groups, thereby generalizing (9).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Carter, R. W.On a class of finite soluble groups. Proc. London Math. Soc. (3), 9 (1959), 623640.Google Scholar
(2)Carter, R. W.Nilpotent self-normalizing subgroups of soluble groups. Math. Z. 75 (1961), 136139.CrossRefGoogle Scholar
(3) Gaschütz, W.Zur Theorie der endlichen aufiösbaren Gruppen. Math. Z. 80 (1963), 300305.Google Scholar
(4)Hall, M. Jr.The theory of groups (Macmillan; New York, 1959).Google Scholar
(5)Hall, P.On the system normalizers of a soluble group. Proc. London Math. Soc. (2), 43 (1937), 507528.Google Scholar
(6)Hall, P.Wreath powers and characteristically simple groups. Proc. Cambridge Philos. Soc. 58 (1962), 170184.Google Scholar
(7)Kurosh, A. G.Theory of groups, vol. II, trans. Hirsch, K. A. (Chelsea; New York, 1960).Google Scholar
(8)McLain, D. H.On locally nilpotent groups. Proc. Cambridge Philos. Soc. 52 (1956), 511.Google Scholar
(9)Stonehewer, S. E.Abnormal subgroups of a class of periodic locally soluble groups. Proc. London Math. Soc. (3), 14 (1964), 520536.Google Scholar
(10)Stonehewer, S. E.Locally soluble FC-groups. Arch. Math. 16 (1965), 158177.Google Scholar