Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T01:08:29.568Z Has data issue: false hasContentIssue false

Extracting almost symmetric sequences in rearrangement invariant spaces

Published online by Cambridge University Press:  24 October 2008

Yves Raynaud
Affiliation:
Equipe d'analyse, Université Paris VI, 75252 – Paris, France

Abstract

We extend to a wider class of rearrangement invariant spaces a result of S. Guerre concerning the extraction of almost symmetric sequences from a given weakly null sequence in Lp.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bastero, J. and Raynaud, Y.. Quotients and interpolate spaces of stable Banach spaces. Studia Math. 93 (1988), to appear.Google Scholar
[2]Bergh, J. and Lofstrom, J.. Interpolation Spaces, an Introduction (Springer-Verlag, 1976).CrossRefGoogle Scholar
[3]Berkes, I.. On Almost Symmetric Sequences in Lp. University of Texas Functional Analysis Seminar (19851986).Google Scholar
[4]Berkes, I. and Rosenthal, H. P.. Almost exchangeable sequences of random variables. Z. Wahrsch. Verw. Gebiete 70 (1985), 473507.CrossRefGoogle Scholar
[5]Braverman, M. Sh.. Complementability of subspaces generated by independent functions in a symmetric space. Functional Anal. Appl. 16 (1982), 129130.CrossRefGoogle Scholar
[6]Bretagnolle, J. and Dacunha-Castelle, D.. Applications de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans les espaces Lp. Ann. Sci. École Norm. Sup. (4) 2 (1969), 437480.CrossRefGoogle Scholar
[7]Dacunha-Castelle, D.. Variables aléatoires échangeables et espaces d'orlicz. Séminaire Maurey-Schwartz, Ecole Polytechnique, Paris, (19741975).Google Scholar
[8]Feller, W.. An Introduction to Probability Theory and its Applications, vol. II (Wiley, 1966).Google Scholar
[9]Garling, D. J. H.. Stable Banach spaces, random measures and Orlicz function spaces. In Probability Measures on Groups, Lecture Notes in Math. vol. 928 (Springer-Verlag, 1982), pp. 121175.CrossRefGoogle Scholar
[10]Gaposkhin, V. F.. Convergence and limit theorems for sequences of random variables. Theor. Probab. Appl. 17 (1972), 379399.CrossRefGoogle Scholar
[11]Guerre, S.. Types et suites symétriques dans Lp, 1 ≤ p < + ∞. Israel J. Math. 53 (1986), 191208CrossRefGoogle Scholar
[12]Guerre, S.. Sur les suites presque échangeables dans Lq, 1 ≤ q < 2. Israel J. Math. 56 (1986), 361380.CrossRefGoogle Scholar
[13]Guerre, S. and Raynaud, Y.. On sequences with no almost symmetric subsequence. University of Texas Functional Analysis Seminar (19851986).Google Scholar
[14]Johnson, W. B., Maurey, B., Schechtman, G. and Tzafriri, L.. Symmetric structures in Banach spaces. Mem. Amer. Math. Soc. 19, no. 217 (1979).Google Scholar
[15]Krivine, J. L. and Maurey, B.. Espaces de Banach stables. Israel J. Math. 39 (1981), 273295.CrossRefGoogle Scholar
[16]Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces, vol. II (Springer-Verlag, 1979).CrossRefGoogle Scholar
[17]Maurey, B.. Tout sous espace de L 1 contient un lp, d'après D. Aldous. Séminaire d'analyse Fonctionnelle, Ecole Polytechnique, Paris (19791980).Google Scholar
[18]Raynaud, Y.. Deux nouveaux exemples d'espaces de Banach stables. C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 715717.Google Scholar
[19]Rosenthal, H. P.. On subspaces of Lp. Ann. of Math. (2) 97 (1973), 344373.CrossRefGoogle Scholar