Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T10:27:27.315Z Has data issue: false hasContentIssue false

Einstein–Weyl geometry, dispersionless Hirota equation and Veronese webs

Published online by Cambridge University Press:  24 April 2014

MACIEJ DUNAJSKI
Affiliation:
Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeWilberforce Road, Cambridge CB3 0WA. e-mail: [email protected]
WOJCIECH KRYŃSKI
Affiliation:
Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeWilberforce Road, Cambridge CB3 0WA, UK, and Institute of Mathematics of the Polish Academy of SciencesŚniadeckich 8, 00-956 Warsaw, Poland. e-mail: [email protected]

Abstract

We exploit the correspondence between the three–dimensional Lorentzian Einstein–Weyl geometries of the hyper–CR type and the Veronese webs to show that the former structures are locally given in terms of solutions to the dispersionless Hirota equation. We also demonstrate how to construct hyper–CR Einstein–Weyl structures by Kodaira deformations of the flat twistor space $T\mathbb{CP}^1$, and how to recover the pencil of Poisson structures in five dimensions illustrating the method by an example of the Veronese web on the Heisenberg group.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blaszak, M.Multi-Hamiltonian Theory of Dynamical Systems (Springer 1998).Google Scholar
[2]Bogdanov, L. V. Dunajski-Tod equation and reductions of the generalized dispersionless 2DTL hierarchy. arXiv:1204.3780, (2012).CrossRefGoogle Scholar
[3]Bogdanov, L. V. and Konopelchenko, B.On the dbar-dressing method applicable to heavenly equation. Phys. Lett A345 (2005), 137143.CrossRefGoogle Scholar
[4]Bogdanov, L. V., Chang, J. H. and Chen, Y. T. Generalized dKP: Manakov-Santini hierarchy and its waterbag reduction. arXiv:0810.0556, (2008).Google Scholar
[5]Burovskiy, P. A., Ferapontov, E. V. and Tsarev, S. P. Second order quasilinear PDEs and conformal structures in projective space. arXiv:0802.2626v3 (2008).Google Scholar
[6]Cartan, E.Sur une classe d'espaces de Weyl. Ann. Sci. Ecole Norm. Supp. 60 (1943), 116.Google Scholar
[7]Davidov, J., Grantcharov, G. and Mushkarov, O. Geometry of neutral metrics in dimension four. arXiv:0804.2132, (2008).Google Scholar
[8]Doliwa, A. Hirota equation and the quantum plane. arXiv:1208.3339, (2012).CrossRefGoogle Scholar
[9]Dunajski, M. The nonlinear graviton as an integrable system, Ph.D. thesis, Oxford University, (1998).Google Scholar
[10]Dunajski, M.The Twisted Photon Associated to Hyper-hermitian Four Manifolds. J. Geom. Phys. 30 (1999), 266281.Google Scholar
[11]Dunajski, M.A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type. J. Geom. Phys. 51 (2004), 126137.Google Scholar
[12]Dunajski, M.Solitons, Instantons and Twistors. Oxford Graduate Texts in Mathematics 19, (Oxford University Press, (2009))CrossRefGoogle Scholar
[13]Ferapontov, E. V. and Khusnutdinova, K. R.The characterisation of two-component (2+1)-dimensional quasilinear systems. J. Phys. A37 (2004), 29492963.Google Scholar
[14]Ferapontov, E. and Kruglikov, B. Dispersionless integrable systems in 3D and Einstein-Weyl geometry. arXiv:1208.2728, (2012).Google Scholar
[15]Gelfand, I. and Zakharevich, I.Webs, Veronese curves and bihamiltonian systems. J. Funct. Anal. 99 (1991), 150178CrossRefGoogle Scholar
[16]Hitchin, N. Complex manifolds and Einstein's equations in Twistor Geometry and Non-Linear systems H. Doebner and T. Palev, Lecture Notes; Math. vol 970 (springer, 1982).Google Scholar
[17]Jones, P. and Tod, K. P.Minitwistor spaces and Einstein–Weyl spaces. Class. Quantum Grav. 2 (1985), 565577.Google Scholar
[18]Kodaira, K.On stability of compact submanifolds of complex manifolds. Amer. J. Math. 85 (1963), 7994.Google Scholar
[19]Kryński, W.Geometry of isotypic Kronecker webs. Central European J. Math 10 (2012), 18721888.Google Scholar
[20]Magri, F.A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19 (1978), 1156.Google Scholar
[21]Manakov, S. V. and Santini, P. M.A hierarchy of integrable partial differential equations in 2+1 dimensions associated with one-parameter families of one-dimensional vector fields. Theoet. and Math. Phys. 152 (2007), 147156.Google Scholar
[22]Marvan, M. and Sergyeyev, A. Recursion operators for dispersionless integrable systems in any dimension. arXiv:1107.0784v2, (2011).Google Scholar
[23]Merkulov, S. and Pedersen, H.Projective structures on moduli spaces of compact complex hypersurfaces. Proc. Amer. Math. Soc. 125 (1997), 407.Google Scholar
[24]Nakata, F.A construction of Einstein-Weyl spaces via LeBrun-Mason type twistor correspondence. Comm. Math. Phys. 289 (2009), 663699.Google Scholar
[25]Olver, P.Applications of Lie Groups to Differential Equations. (Springer, 2000).Google Scholar
[26]Ovsienko, V. and Roger, C.Looped Cotangent Virasoro Algebra and Non-Linear Integrable Systems in Dimension 2 + 1. Comm. Math. Phys 273 (2007), 357378.Google Scholar
[27]Panasiuk, A.Veronese webs for bi-Hamiltonian structures of higher corank. In Poisson Geometry Banach Center Publ. 51, (Polish Acad. Sci., Warsaw, (2000))Google Scholar
[28]Pavlov, M. V.Integrable hydrodynamic chains. J. Math. Phys. 44 (2003), 41344156.Google Scholar
[29]Penrose, R.Nonlinear gravitons and curved twistor theory. Gen. Relativity Gravitation 7 (1976), 3152.Google Scholar
[30]Turiel, E. J.C -équivalence entre tissus de Veronese et structures bihamiltoniennes” C. R. Acad. Sci. Paris 328 (1999), 891894.Google Scholar
[31]Zakharevich, I. Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs. arXiv:math-ph/0006001v1, (2000).Google Scholar